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Abstract—Model-based testing is a technique for generating 

test cases from a test model. Various notations and techniques 

have been used to express the test model and generate test cases 

from those models. Many solutions use customized modelling 

languages and in-depth white-box static analysis for test genera-

tion. This allows for optimizing generated tests to specific paths 

in the model. Others use general-purpose programming lan-

guages and light-weight black-box dynamic analysis. While this 

light-weight approach allows for quick prototyping and easier 

integration with existing tools and user skills, optimizing the 

resulting test suite becomes more challenging since less infor-

mation about the possible paths is available.  In this paper, we 

present and compare three approaches to such black-box optimi-

zation. 

Keywords—model based testing; test automation; evaluation; 

test generation; optimization 

I.  INTRODUCTION 

Model-based testing (MBT) [1] is a technique for generat-
ing test cases from a test model. As opposed to manual test 
design, where a test expert designs test cases one by one, in 
MBT the test expert designs a test model to represent a set of 
test cases and uses an MBT generator tool to generate a set of 
test cases from it.   

As the generator can potentially create a very large number 
of test cases for any non-trivial model, various optimization 
approaches are often applied to choose which test cases to 
include in the generated set.  Many optimization solutions [2, 3, 
4, 1, 5] use a custom notation combined with a specialized 
runtime environment to represent the test model, allowing for 
performing an in-depth white-box static analysis, e.g., symbol-
ic execution, of the model. Tools such as constraint solvers can 
then be applied on this information to find test cases that yield 
short paths to reach given coverage targets [3, 6, 5]. Some use 
manually crafted scenarios to guide the generator towards 
specific paths [2]. 

In our work, we have aimed to provide light-weight testing 
solutions suitable for easy industry adoption and to support a 
fast iterative testing process through rapid prototyping of test 
models, test generation, and test execution, while still provid-
ing good test coverage and useful test results. We use a gen-
eral-purpose programming language (Java) to represent our test 
models, allowing use of all language features, tools, libraries, 

networked services, and the standard (Java) virtual machine 
(JVM) runtime. This enables using existing development skills 
and toolsets such as test libraries and environments, integrated 
development environments, and continuous integration sys-
tems, along with any features they provide. Our open-source 
test generator called OSMO Tester [8] has been successfully 
applied, together with a number of industry partners, to test 
large scale real industry systems. 

Our test model is as an executable program, executed in 
different ways by the generator to produce test cases. We allow 
use of different, evolving versions of the language platform 
(virtual machine) and language features to create the model and 
run the generator on it. As the model can make use of third-
party libraries and networked services, we assume no access to 
source code or even all binaries for analysis. Such limitations 
are common in practical settings (e.g. [7]). Thus, we cannot 
apply approaches based on white-box static analysis in this 
context but rather rely on dynamic analysis and information 
available at runtime. We call this type of test generation model-
based black-box test generation. While there has been exten-
sive research into optimizing test generation using static analy-
sis based approaches, little work exists in optimizing model-
based black-box test generation.  

In this paper, we describe three algorithms for optimizing 
test generation in this type of an environment. All of them are 
based on generating a large set of potential tests in parallel and 
picking the most optimal ones based on given coverage criteria. 
One is targeted at online testing where test generation and 
execution are interleaved. Two others are targeted at offline 
testing where the test set is first generated and later executed in 
a separate phase. We compare the strengths and weaknesses of 
the three algorithms and make usage recommendations. 

The rest of the paper is structured as follows. Section II 
presents background on our modelling notation and test genera-
tor. It also defines how we assess achieved test coverage over 
the test model. Section III presents our optimization algo-
rithms. In Section IV, we evaluate each algorithm individually 
in terms of achieved coverage, generation time and test length. 
In Section V, we compare the different approaches to each 
other. In Section VI, we compare our results with related work.  
We conclude in Section VII with a summary of the paper and 
discussion of future research directions.  



II. BACKGROUND 

To provide background for the following sections, we first 
briefly outline our modelling notation and model structure and 
describe our notion of test coverage, including how model 
elements are used to calculate coverage. 

A. Modelling Notation 

OSMO Tester uses a generic programming language (Java) 
as the modelling language. To generate test cases, the test gen-
erator executes different paths through the model which is 
often referred as a model program [9, 10]. 

In Figure 1, we illustrate our notation using a simple test 
model for a counter which can perform two functions: increase 
(the value of the counter by one) and decrease (the value of the 
counter by one).  For illustration purposes, we will later use ‘+’ 
to represent the increase step and ‘-‘ -- the decrease step. 

In this model, the system under test (SUT) is represented by 
the sut variable. This example illustrates an online testing ap-
proach where the test steps are concretely executed against the 
SUT as they are generated. In an offline approach, the test steps 
yield a script which also includes the input for the SUT and the 
checks to perform against its states and output. 

1: public class CounterModel { 
2:  @Variable  //annotation to identify interesting model state to generator 
3:  private int value = 0; 

4:  private Counter sut = new Counter(); 

5:  private Requirements req = new Requirements();  
6:  @BeforeTest 

7:  public void start() { 

8:    value = 0; 
9:    sut.reset(); 

10: } 

11:  @Guard("decrease") 
12:  public boolean allowDecrease() { 

13:    return value > 1; //when true, “decrease” is enabled 

14:  } 
15:  @TestStep("decrease") //enabled when above guard true 

16:  public void decreaseCounter() { 

17:    value--; //updates our model state 
18:    sut.decrease(); //execute test step on SUT 

19:    assertEquals(value, sut.value); //test oracle, check model vs SUT 

20:    req.covered(“decrease”); //user defined coverage requirement 
21:  } 

22:  @TestStep("increase") //has no guards, so is always enabled 

23:  public void increaseCounter() { 
24:    value++; //updates our model state 

25:    sut.increase(); //execute test step on SUT 

26:    assertEquals(value, sut.value); //test oracle, check model vs SUT 
27:    req.covered(“increase”); //user defined coverage requirement 

28:  } 

29:  @CoverageValue( public String zero() { 
30:    return “” + (value == 0); 

31:  } 

Figure 1. Example counter model program. 

The two basic model elements here are the methods anno-
tated with @TestStep and @Guard. The @TestStep methods 
represent test steps that are executed by the test generator at 
different times to produce a test case. In MBT, these are also 
referred to as actions [11] and action methods [5]. Each test 
step invokes a function on the SUT, updates the model state, or 
checks the SUT state and output against the expected values 
(the test oracle). A sequence of these steps forms a path 
through the model, producing a test case. 

To define the potential paths, i.e., the steps the generator 
can take in a specific model state, the test generator executes 
all @Guard-annotated methods (line 11 in Figure 1). These 
define rules for enabling test steps. When the guards for a step 
become true, the step is enabled, and at each point the genera-
tor can choose to take any of the enabled steps. The association 
of guards to steps is based on matching the names given as 
parameters to the annotations. For example, in the beginning 
value is 0 and thus the guard for decrease is false, meaning the 
test can only start with the increase step. 

B. Specifying Coverage Values 

In our example, the current value of the counter is stored in 
the model as the value variable. The annotation @Variable 
identifies this variable to be of relevant for the generator to 
track for coverage. To provide a test oracle, the value variable 
is constantly updated to match the expected value as result of 
actions executed against the SUT (lines 17 and 24). These 
actions are the test steps invoking the increase and decrease 
functionality of the actual SUT (lines 18 and 25). The test 
oracle compares the actual value in the SUT with the expected 
value in the model (lines 19 and 26). 

We also define a set of additional terms for elements of the 
model when calculating our test coverage. We use the term 
step-pair to refer to two steps following one another in a test 
case. For example, a path of ‘++-++’ would have three unique 
step-pairs: ‘++’, ‘+-‘, and ‘-+’. 

The user can also define their own paths of interest and 
functions to give values that the generator should track for 
coverage purposes. Coverage requirements (lines 20 and 27) 
can be used to tag specific paths of interest through the model. 
Methods annotated with @CoverageValue annotation (line 29) 
can be defined to return String values to record as covered for 
specific paths. Typically, these record specific instances or 
combinations of interest for model state. In our example, it 
records whether the value `zero’ is covered by a path. As such 
functions are typically related to model state, we refer to them 
as user defined state coverage.  When two different values are 
observed in a sequence inside a test path, the term state-pair 
coverage is used. State-pairs are recorded similarly to step-
pairs but with the user defined state values. 

The annotations, variable names and values, and method in-
formation are accessed at runtime using the standard JVM 
reflection support, maintaining the black-box quality of our 
approach. 

C. Coverage Calculation 

In order to evaluate model coverage achieved by the gener-
ated test cases, our generator keeps track of the sequence of test 
steps it has taken, and any coverage values it has observed 
during these steps. Using MBT terminology from [11], we 
support data coverage (state values and their pairs, model vari-
ables), model structure coverage (test steps and their pairs), and 
model requirements coverage. 

Users can guide the tool to prioritize coverage of specific 
model elements according to current testing needs. This priori-
tization is achieved by changing weights of the different model 
elements.  For example, one can focus on specific model ele-
ments by zeroing the other weights or tune state weight lower 



for a model with a large state-space to limit focus on state at 
the expense of other criteria.  

The model elements used for coverage calculation and their 
default weights used by our tool are given in Table 1. The 
default weights have been determined based on our experience 
in working with different test models and generating test cases 
for those in order to achieve overall high coverage. 

N Model Element Default Weight 

1 Variables 10 

2 Variable values 1 

3 Test steps 20 

4 Step pairs 30 

5 Requirements 50 

6 User defined states 50 

7 State-pairs 40 
Table 1. Coverage elements. 

Using E to represent a model element and W its weight, the 
formula to calculate the coverage score is 

∑       

 

   

 

That is, the number of unique values observed for each 
model element is multiplied by the weight for that element, and 
the sum of these forms the coverage score for a test case. For 
example, a test case TC1 with a path of ‘++-++’ would cover 1 
variable (value), 3 variable values (1,2,3 for value), 2 steps 
(‘+’,’-‘), 3 step-pairs (‘++‘, ‘+-’, ‘-+’), 2 requirements (‘in-
crease’, ‘decrease’), 1 user defined state (‘false’), and a single 
state pair (‘false-false’). The score of this path is thus 
10*1+1*3+ 20*2+30*3+50*2+50*1+40*1 = 333. 

The coverage score for a test suite (all test cases generated 
up to current point) is calculated by adding up all items in all 
test cases and then applying the formula. For example, suppose 
a test suite consists of TC1 defined above and a test case TC2 
covering the path `++_+’. If TC2 was the only test case, is 
value would be 10*1+1*2+20*2+30*4+50*2+50*2+40*3 = 
492.  

The difference to TC1 adding a new step-pair ‘--', which al-
so leads to value zero for the counter variable and thus produc-
es one new state ‘true’ and two new state-pairs ‘false-true’ and 
‘true-false’. However, since TC1 is already in the test suite, 
adding TC2 to it only increases the score of the suite by the 
values not already covered by any test in the suite. These are 
the new step-pair and the new state-pairs. Thus the suite score 
rises by 30*1 (step-pair) + 1*50 (state) + 2*40 (state-pairs) = 
160. The final coverage score for this test suite is then 333+160 
= 493. If TC2 was added to the test suite first, adding TC1 
would only increase the suite score by 1 as the only element 
value not covered by TC2 in TC1 is the counter variable value 
3.  In general, our scoring function guarantees that the score of 
a test suite is independent on the order of adding test cases. 

III. OPTIMIZATION ALGORITHMS 

In this section, we describe our optimization algorithms. 
We first describe the online optimization algorithm (Section 3-

A), followed by the two offline algorithms (Sections 3-B and 
3-C). 

A. Online Algorithm 

Online testing interleaves test generation with test execu-
tion. Once the generator chooses a test step, it immediately 
executes it against the SUT; once the step has finished execut-
ing, it chooses the next step, etc.  For us, online testing pro-
vides immediate test results and gives fast feedback to the test 
generation, modelling and evaluation process, and thus we 
want online test generation to be as fast as possible.   

This type of real-time online test generation prevents us 
from doing optimization beforehand as we need to support 
cases where changes are made to the model, the generator is 
immediately invoked, and tests are generated and executed. To 
support this scenario, our online optimization algorithm ex-
plores sets of potential future steps while the previously chosen 
step is still executing. In our experience, this is suitable for a 
set of systems where executing a test step takes a non-trivial 
amount of time, such as testing web- or smartphone-
applications through a graphical user interface (GUI). By mak-
ing use of such delays, the algorithm can help optimize the 
online test coverage in parallel with test case execution. 

The high-level algorithm is described in Figure 2. When the 
generator has chosen a step to execute (using the algorithm in 
Figure 2) but before it has executed it, it starts the exploration 
of the next step in parallel threads (or concurrently on a net-
worked larger machine as discussed in [12]). It takes the se-
quence of steps so far executed (LS) for the current test case 
and the exploration depth (D) given by the user as input. The 
exploration depth defines how many steps the algorithm tries to 
look into the future in parallel to current step execution. 

Input: current model instance and state CM used for concrete test generation, 
            list of steps LS currently taken in test case, the exploration depth D. 

Output: The next step to take. 
1.  execute all model guards on CM to construct the set of enabled steps ES 

     Set the set of potential future paths PP to empty set ∅. 
2.  for each step S in ES 

3.    create a new instance M of the model program 
4.    set M in exploration mode 

5.    execute all steps in LS on M to reach current test state for M 

6.    execute S on M to reach a new state NS 
7.    decrease D by 1 

8.       if D > 1, repeat from 2 

9.       else add this path for M to  PP 
10. set value for best path score B to 0, create new empty set of best paths SB 

11. for each potential path P in PP 

12.   calculate coverage score CS for P 
13.   if CS > B, clear SB and set B as CS 

14.   if CS == B, add P to SB 

15. return a random choice from SB as the next step to take 

Figure 2. Algorithm for online optimization. 

The starting point is the current concrete model instance 
CM (and its state) used to generate test cases. To explore the 
potential future paths, the algorithm starts with the set of ena-
bled steps ES, that is the set of steps in CM where no guard 
returns false, as explained in Section II-A. For each step S in 
ES, a new instance M of the model program is created. This is 
set to exploration mode by invoking @ExplorationEnabler 
annotated methods on the model. This should, for example, 
replace a reference to a real SUT with a mock version that 



invokes no real functionality and thus has no visible side-
effects when steps in M are invoked. The current set of steps 
LS is executed on this M to achieve the current generation state 
for M. This is repeated for each S, so that each S has its own 
instance of M that is in the same generation state. 

For each of these instances of M, the associated S is in-
voked. If the exploration has at this point reached depth D, the 
coverage score for each M is calculated and that is the score 
that is given to this path. If D is not yet reached, all these exe-
cuted paths for the different instances of M are taken as the 
new sets of steps LS and the algorithm starts from beginning 
for all these, with the value of D reduced by one. 

In the end, all the final paths are taken and the highest scor-
ing ones are collected. If there are several, the one that has the 
highest score fastest (in fewer steps) is taken. If several are still 
equal, one is chosen at random. The next unexecuted step on 
this path is given as a choice for the generator. 

Once the execution of the previous step has finished, the 
choice given as the next step is the result of this parallel explo-
ration. If the exploration finished before the actual execution of 
the previous step, the choice is immediate as the result is avail-
able. Otherwise, the algorithm waits for the parallel exploration 
to finish. This may incur some extra delay, which can be miti-
gated by forming an “exploration buffer”. This refers to start-
ing the exploration for the following step after the one that was 
explored already, in cases where the exploration finishes before 
the concrete execution of a parallel step does.  

For example, assume we start concrete execution of step 1 
and exploration of step 2 at the same time. If step 2 finishes 
exploration before step 1 finishes executing, exploration can 
proceed to step 3. This helps even the differences between 
steps that take different times to execute and explore. 

B. Offline Algorithms 

Our offline optimization algorithm has two different varia-
tions. One aims to optimize for a large test set covering a high 
variation of the test model elements, using the coverage formu-
la presented in Section II.B. The other one aims to optimize for 
minimal test lengths to cover specific targets in the test model. 

Greedy Variation Optimizer. The version targeting high 
variation is a form of greedy algorithm. It is described in Fig-
ure 3. The main arguments it takes from the user are the popu-
lation size (PS) and the timeout value (TO). The number of 
parallel generators (P) to run can also be configured but de-
faults to the number of processing units for the system. 

The greedy algorithm runs P versions of generators G in 
parallel. In Figure 3 This is represented as G1-P meaning there 
are P different instances of test generators. The different ones 
are referred to as Gx, where x stands for one value from 1-P, or 
one instance of the generator. Each Gx is configured with the 
test generator configuration (GC) provided by the user and 
automatically populated with a unique randomization seed (to 
produce different test cases). Each Gx generates a given num-
ber of new test cases (PS). The new generated set of tests GS 
for Gx is merged with the existing test suite TS (which starts 
empty). Every T in TS is then iterated and highest scoring tests 
are added to the existing test suite TS for each Gx. First, the test 

T that has the highest coverage score in GS is added to TS and 
removed from GS. This process repeats until GS is empty or no 
T gets a positive score.  Same procedure is done for each Gx 
generating a new GS and merging with TS.   

Finally, once the overall generation timeout TO is reached 
or TS has not changed throughout the entire iteration, the pro-
cess is stopped for that Gx. Once all Gx are finished, the TS for 
all Gx are combined to form the final optimized test set OS 
which is returned. This is done similar to creating the set for a 
single generator, starting with the highest scoring test in the 
overall set, followed by the test that adds most to this test 
(suite), and so on. 

Input: generator configuration GC, population size PS, timeout TO,    

          degree of parallelism P. 

Output: Generated test suite OS 

1.   create P instances of test generator as G1-P, configured with GC 

2.   for each Gx, in G1-P run the following in parallel 

3.     create empty test suite TS (∅) 

4.     create unique randomization seed for Gx 

5.     use Gx to generate PS new test cases as the test set GS 

6.     add tests in TS to GS 

7.     clear TS, setting TS to empty set ∅ 

8.     for each test T in GS 

9.       calculate added score AS for T when added to TS 

10.   add highest scoring T to TS and remove it from GS 

11.   if any T remains in GS with AS > 0, iterate from step 8 

12.   if timeout TO has been reached, stop generation with Gx 

13.   else if TS scores higher or is shorter than previous TS  

14         continue from line 5 

15.    else stop generation with Gx 

16. wait for all Gx to finish 

17. merge results for all Gx using lines 8-11 as output set OS 

18. return OS 

Figure 3. Greedy algorithm for offline optimization. 

Single Target Optimizer. The single target offline optimiza-
tion approach, described in Figure 5, aims to generate a set of 
test cases where each coverage requirement is covered by a 
single test case of the shortest possible length. This can be 
useful if specific tests are needed but we want to have them 
generated from the model as opposed to manual scripting. 

This algorithm starts by generating test cases as random 
walks through the model, using a set of P test generators G1-P 
running in parallel. Each Gx is used to generate a given number 
PS of test cases. When a Gx finds a new test case T that covers 
a previously uncovered requirement R, it changes the global 
generator state to target finding R and to only allow the steps in 
T. T now becomes the reference test, called BT, for covering 
R. Upon finishing their iteration of generating PS tests, each Gx 
reconfigures itself with the new global generator state. This 
means that the goal of every G is to find a shorter path to cover 
R. The set of R to find can be given to the algorithm or it can 
pick them up from the model as it generates tests from it. 

To further help the generators find potentially shorter paths, 
the global state is modified after each iteration to look for only 
those tests which are shorter than BT. Each Gx is configured to 
allow each available step one time less than in BT. If any Gx 
finds a new test T with a shorter path to R, this T becomes the 
new BT for R and all Gx reconfigure to target shortening this 
new BT. After test timeout TO is reached or the path cannot be 



shortened any more (it only has instances of one step), the final 
BT for R is added to the final output set OS. 

Finally, the search is restarted with the goal of finding a 
new test for an uncovered R. The previously covered require-
ments are ignored at this point. The process is repeated until all 
requirements have been covered or suite timeout SO is reached. 

Input: generator configuration GC, population size PS,  

          suite timeout SO, test timeout TO, degree of parallelism P. 

Output: Generated test suite OS with one test case for reaching each  

              requirement R 

1.   create P instances of test generator as G1-P, configured with GC 

2.   create unique randomization seed for each Gx in G1-P 

3.   while SO has not been reached 

4.     run each Gx in parallel to generate PS test cases as test suite TS 

5.     if any test T in any TS for any Gx reached a new uncovered R 

6.       set R as target to cover for each Gx 

7.       set best test BT for R to T 

8.       for each step S in BT 

9.          reconfigure all Gx to only allow the steps in (BT – S) 

10.        use Gx to generate PS new test cases TS2 

11.        if any test T2 in TS2 is shorter than BT, set BT to T2  

12.     iterate from line 8 until minimal BT achieved or TO is reached 

13. add BT to final output test suite OS 

14. iterate from line 1 until SO is reached or all requirements are 

covered 

15. return OS 

Figure 5. Single target algorithm for offline optimization. 

IV. EVALUATION 

In this section, we describe the evaluation of the algo-
rithms. Two different systems were used in the evaluations. 
One is a laptop with dual-core Intel Core i5 2.67GHz CPU. 
With hyper-threading, it has 4 virtual processing units, and our 
evaluations on it run 4 tasks in parallel. The JVM is configured 
with 2GB maximum heap size out of 4GB physical RAM. The 

second system is a desktop with quad-core Intel Core i7 
2.8GHz CPU. With hyper-threading, it runs 8 parallel tasks. 
The JVM is configured with 20GB heap out of max 24GB.  

While we have experience with several industry models, we 
cannot describe these due to confidentiality reasons. Thus our 
evaluations use three publically available models. Two of 
these, a test model for a movie reservation system (ECinema), 
and for a GSM SIM card [1], are ported from the ModelJUnit 
MBT tool [13]. The third model was previously developed by 
us for a web application called iTrust, which is a role-based 
healthcare application [14]. While these are not actual industry 
models, in our experience the relevant complexity is similar in 
terms of relevant structural coverage elements of the model 
such as states, and test steps. The models are available as part 
of our tool website and repository [8]. 

Table 2 summarizes the sizes of these models in terms of 
their model elements (used in coverage calculations). The 
number of step-pairs also considers the start of test generation 
as a separate step, thus increasing the number of pair count by 
the number of steps. For example, SIM has 15

2
+15 

(225+15=240) step-pairs. 

Model Steps Step-

Pairs 

States State-

Pairs 

Reqs 

ECinema 19 177 9 40 17 

SIM 15 240 2.6k+ 22k+ 32 

iTrust 40 800 47 1124 11 

Table 2. Model sizes. 

We used the default coverage weights described in Table 1 
with one exception. Relative to the other model elements, the 
SIM model had a large number of possible state and state-pair 
values. Thus we set its state weight to 5 and state-pair weight to 
1 in order to avoid the huge state space taking over all other 
coverage criteria. This is a typical example of tuning the cover-
age weights per domain as discussed in Section II-B. 

Model Alg. Steps Step-Pairs States State-Pairs Requirements 

Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg 

ECin. Rand 16 19 18,7 143 163 156 9 9 9 35 37 36,9 16 17 17 

 Expl-1 18 19 19 154 168 161 9 9 9 37 37 37 17 17 17 

 Expl-2 19 19 19 169 172 172 9 9 9 37 37 37 17 17 17 

SIM Rand 15 15 15 240 240 240 591 772 684 2562 2969 2770 30 32 30,1 

 Expl-1 15 15 15 240 240 240 1619 1985 1799 4396 4998 4639 32 32 32 

 Expl-2 15 15 15 240 240 240 2464 2670 2562 7111 7791 7413 32 32 32 

iTrust Rand 40 40 40 463 573 528 40 47 46,6 277 519 383 9 11 10,7 

 Expl-1 40 40 40 649 800 762 45 47 46,9 410 685 528 9 11 10,9 

 Expl-2 40 40 40 643 777 737 46 47 46,7 707 906 804 11 11 11 

 Table 3. Model coverage for 100 runs. 

 

 
Figure 4. Exploration time vs execution time. 
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A. Online Algorithm 

For this algorithm, we are interested in the improvements of 
coverage when compared to the baseline approach of random 
step selection. We are also interested in the time it takes to 
explore each step compared with executing the previous step.  
That is, we are interested in the cost and benefit of exploring 
the next step(s) while the previous are executing.  

To set our evaluation parameters, we did an initial scalabil-
ity study using the three models with 10, 20 and 30 steps, no 
guards, and exploration depths of 1, 2, and 3. This means that 
the algorithm always had S

D
 steps to explore at every point 

(which is also the worst case complexity of the algorithm), 
ranging from 10

1
 to 30

4
, or 10 to 27000 steps. To set a realistic 

test length parameter, we ran all these combinations with test 
length up to 500 and measured the time for each length. As the 
exploration algorithm needs to repeat the current steps in the 
current test case for every explored future step, long test cases 
can cause it to slow down. 

We found that at around 100 test steps with a model of 20 
steps and depth of 2, the average time was around 200 milli-
seconds, which in our experience is a reasonable time for many 
GUI testing environments to take to execute a real step. For 
depth of 3, the time to explore a step for a model of this size 
was close to three seconds. Thus we chose to use depth of 2 as 
a realistic maximum depth of exploration. We also set 100 as 
our test length parameter since test cases observed in real pro-
jects were seldom longer than that.  

Coverage. Table 3 shows the coverage results for our actual 
evaluation test models. In the left column, Rand refers to a 
random choice algorithm Expl-1 to our exploration algorithm 
with depth of 1, and Expl-2 with depth of 2. Each of these was 
run 100 times with different randomization seeds to produce 
100 different test suites. For each algorithm, the table shows 
the minimum, maximum and average number of each elements 
these 100 test suites covered. 

From this, we can see that the exploration algorithm outper-
forms the random selection for all our coverage criteria. An 
interesting detail is how the iTrust Expl-2 case achieves lower 
step-pair coverage than iTrust Expl-1. We speculate this is due 
to the algorithm putting more focus on covering a much higher 
number of state-pairs, which is due to the two having the same 
default weights (step-pairs and state-pairs). 

Timing. To evaluate the timing aspect of the algorithm, we 
used the iTrust system as a test subject as it was tested through 

the web-based graphical-user interface (GUI), which in our 
experience is a good candidate platform for parallel optimiza-
tion due to test execution delays. The experiment was run on 
our laptop system, also running the SUT, which includes a 
MySQL database, a Tomcat webserver, and the iTrust applica-
tion itself. Test execution used the Selenium WebDriver 
(Chrome) component, allowing control of an actual browser to 
simulate a test user using the application. Thus, the flow is the 
same as with an actual user, with all the requests going through 
the whole SUT from the browser to the backend database and 
back. 

The results are visualized in Figure 5. Random refers to the 
time it takes to choose a step and execute it using the random 
step selection algorithm. As the random choice is practically 
instantaneous, we use it as a baseline comparison to evaluate 
the overhead of the parallel exploration. Exp-D1 refers to ex-
ploration time for the next step while that step is running, using 
the exploration depth 1. Exp-D2 refers to the same with depth 
2. For the sake of space and readability, four of the highest 
spikes (6s, 4s, 3s and 3s) are not shown in the figure. In all 
these four cases, the exploration time was much lower than test 
execution. 

To briefly summarize the interesting parts, exploration at 
depth of 1 (Expl-D1) is in all cases faster than the execution of 
the concurrent test step (Random). Exploration at depth of 2 
(Expl-D2) is in most cases much slower than the step execution 
time. This means that, for our setup, the depth of 1 is very 
reasonable, while depth of 2 is slower, although it does also 
achieve a much higher exploration score that depth 1. 

Our goal in this study was also to evaluate the general fea-
sibility of the approach to achieve near real-time test generation 
and execution. Here, this is true for depth 1. With optimizations 
and faster computing resources (e.g., [12]) we believe this is 
within reach for depth 2. Of course, this also largely depends 
on concrete test execution speed, which may give us more or 
less time for exploration. In our experience, long delays are 
common in many cases, specifically, with GUI-based testing. 

As shown in Table 3, depth 1 already gives a good increase 
in coverage over random choice. As shown in Figure 5, depth 1 
also adds no extra delay to the test execution cycle, making it 
virtually free while improving coverage. We have already used 
this algorithm in practice as a quick prototyping aid for work-
ing with the different models, combined with other tools such 
as scenario definitions. 

Metric ECinema SIM iTrust 

Min Max Avg Min Max Avg Min Max Avg 

Tests 11 14 12,4 2311 2423 2362 55 61 58 

Length 618 824 714 126348 131987 128722 3568 4011 3784 

Steps 19 19 19 15 15 15 40 40 40 

Step-Pairs 171 177 175 240 240 240 797 800 799 

States 9 9 9 2527 2607 2571 46 46 46 

State-Pairs 40 40 40 21513 22375 21916 1074 1078 1077 

Reqs 17 17 17 32 32 32 1 1 1 

Time(s) 6 14 9 5166 10498 7564 18 39 25 

Table 4. Model coverage for 100 runs with greedy algorithm. 



B. Greedy algorithm 

For this algorithm, we were interested in evaluating how 
well it covers variation over the test model structure. We were 
also interested in the time it takes to achieve the coverage and 
length of the resulting test cases.  

Coverage. Table 4 shows the coverage results for the greedy 
algorithm in similar format to Table 3. Comparing these tables, 
Greedy outperforms Random and Exploration results in most 
cases. The exception is that in a few runs, the number of cov-
ered step-pairs for ECinema and states for SIM is lower for 
Greedy than the maximum achieved by some exploration run. 
That is, while Greedy performs much better than exploration in 
the long run, it may sometimes perform slightly worse for 
some properties. 

Figure 6 shows the overall coverage score evolution for one 
run of each algorithm as new tests are added to the test suite. 
The coverage score shown is the overall score of the test suite 
as shown in Section  II- II.C. The obvious observation is how 
random selection yields much lower coverage score than the 
other algorithms. What is not so clearly visible is how the ex-
ploration algorithms score slightly higher than greedy in the 
beginning, with greedy surpassing depth 1 at test 30 and depth 
2 at test 100.  

 
Figure 6. Coverage score evolution over 200 tests. 

Timing. Unlike the online exploration algorithm, the greedy 
algorithm takes time to start and build the test suite for later 
execution. In this case running the greedy algorithm with our 
desktop configuration takes about 165 minutes. This is the 
delay one would have to wait before starting to execute the 
tests. Compared to the online exploration algorithm, the online 
version has no delay in the start and the overall generation time 
for the exploration at depth of 1 is about 20 minutes and for 
depth 2 about 105 minutes. 

C. Single Target Algorithm 

To evaluate the single target algorithm, we started by inves-
tigating the limits of the algorithm. To do this, we created the 
model shown in Figure 7. This model has 10 test steps, each 
always enabled. Thus the probability of taking any one of them 
with random choice is 10%. It has one requirement to cover, 
and the length of the path that needs to be taken to cover this 
requirement can be configured by the target parameter. Differ-
ent values for this parameter were then applied with tests of 
different length.  

Table 5 summarizes the results, with the Tgt column show-
ing the value of the target variable and the Len column refering 
to the configured length of test cases generated. The length of 
the initial path for a requirement as found by the algorithm is 

given in the Path column. The final reduced path was always 
equal to Tgt column, which is also the shortest possible path. 
This is due to the algorithm reducing the number of steps ex-
perimentally at different iterations and finally reaching the only 
required steps for the requirement path (step 1 in Figure 7). 

public class Model { 
  private final int target;  //the given coverage target 

  private int x = 0; //counter 

 
  public Model(int target) {this.target = target;} 

 

  @TestStep 
  public void step1() { 

    x++; //we have to hit this line target times to cover the requirement 

    if (x == target) req.covered(“target found”); 
  } 

 

  //steps 2-10 are similar to this, bringing probability of taking step 1 to 10% 
  @TestStep 

  public void step2() {}… 

} 

Figure 7. Evaluation model. 

Tgt Len Path % Tgt Len Path % 

5 50 5 1 30 50 - 0 

5 100 5 1 30 100 70 0.02 

5 200 5 1 30 200 76 1 

10 50 10 1 35 50 - 0 

10 100 10 1 35 100 - 0 

10 200 10 1 35 200 106 1 

15 50 15 1 40 50 - 0 

15 100 15 1 40 100 - 0 

15 200 15 1 40 200 150 1 

20 50 - 0.02 45 50 - 0 

20 100 27 1 45 100 - 0 

20 200 27 1 45 200 - 0.16 

25 50 - 0 50 50 - 0 

25 100 46 1 50 100 - 0 

25 200 52 1 50 200 - 0 

Table 5. Single target algorithm performance. 

Additionally, we used binomial distribution to calculate the 
probability (the % column in Table 5) of hitting a 10% chance 
(as for step 1 in Figure 7) Tgt times for Len experiments for 
each row in Table 5. This gives us the theoretical probability of 
finding a path to cover the requirement on each row. As can be 
seen in the table, the results match the calculated probability. 
For example, with Tgt 20 and Len 50, there is a probability of 
2% to find a path. In this case it is not found. Similarly, with 
Tgt 30 and Len 100 there is a probability of 2% to find a path, 
and in this case we happen to find it. This shows how this type 
of probability analysis can be used to tune the search parame-
ters when we have some idea of the complexity of paths we 
need, and letting the algorithm optimize it once found. 

To further evaluate the performance, we used the SIM 
model as a test subject. It had a set of 35 coverage requirements 
defined by its original authors, and our target was to cover 
these with one test each. Table 6 shows the results for each of 
these requirements using a test length of 50 steps for generation 
and random choice as the initial step selection. Req is the iden-
tifier of each requirement, and Start is the length of the first test 
case the random generator produced that reached that require-
ment. Steps is the length of the final test case computed by our 
algorithm for that requirement. 



The table shows that three requirements were not covered 
at all. In order to find out the reason, we manually analyzed the 
test model for the paths to reach these requirements. We found 
that due to complex ways the different test steps and model 
variables interact, it was not possible to reach those require-
ments in any way. While we are not the authors of the model, 
we assume that this is the result of model evolution where the 
requirements have not been rechecked, perhaps due to the 
complexity of this process. In any case, such knowledge in 
itself is valuable to better understand the test model and the 
generated test cases. 

Req. Steps Start Req. Steps Start Req. Steps Start 

1. 5 17 14. -  27. 1 3 

2. 2 16 15. -  28. 2 31 

3. 1 17 16. 4 32 29. 1 3 

4. 3 50 17. 2 10 30. 1 8 

5. 1 7 18. 1 23 31. 3 17 

6. 11 34 19. 4 24 32. -  

7. 2 6 20. 2 34 33. 4 39 

8. 1 12 21. 5 19 34. 4 38 

9. 10 26 22. 2 24 35. 3 49 

10. 1 4 23. 1 12    

11. 5 19 24. 4 31    

12. 1 6 25. 2 49    

13. 2 31 26. 1 9    

Table 6. SIM model coverage. 

As for the 32 covered requirements, we found that the algo-
rithm did find the minimal path to reach each of these require-
ments in the model. 

Finally, while we believe that the three models we worked 
with are good representatives of practical models, we realize 
that there can be more complex cases where the paths are more 
difficult to minimize due to dependencies between model steps 
and state variables. To evaluate such a case, we executed the 
algorithm on a model with 10 steps out of which four incre-
mented a single variable x. The requirements targets were in 
three different steps, each requiring a specific value (3, 5, and 
10) for x. In this case, to cover the requirement, we need to 
execute the right step for covering it at the exact right time. 
Executing one of the steps that increments the value again 
when x has the correct value (3, 5 or 10) will miss the require-
ment for that run. Thus the probability is much lower. In such a 
case, we found the algorithm can find a path but reducing it to 
an optimal, shortest path, takes a much longer time. This is due 
to the experimental shortening performed by the algorithm not 
working so well when, even after reducing step counts, cover-
ing a requirement is still highly dependent on probabilities of 
step ordering. 

V. DISCUSSION 

Out of the three algorithms that we have presented, the 
online optimizer and the greedy offline optimizer target similar 
goals. Both try to optimize coverage for a variation of chosen 
parts of the model for each test case and the overall test suite. 
The single target offline optimizer is different in trying to gen-
erate a set of test cases where each one reaches a specific path 
requirement. It is not looking for the overall variation using our 
coverage score but rather for a specific set of test cases, each 
with a minimal set of steps for reaching a given requirement. 

As shown in Figure 6, the online exploration approach 
gains coverage faster in the beginning but loses to greedy over 
the long term. This is due to the online algorithm finding many 
uncovered steps, states and their combinations in the beginning 
but lacking vision in later test cases for how to achieve a state 
from which it can again gain more coverage score.  It is also 
due to the states being distributed more after the initial set has 
been covered. The greedy version, on the other hand, selects 
from a large set of random tests, where the initial tests may not 
be as good as those in the online exploration version but where 
over time it finds more uncovered coverage elements in the 
larger set of random tests. For generating an overall regression 
test suite, a combination of these could be useful. 

In our experiments, the time taken to generate both the 
greedy and the online look-ahead optimization sets is about the 
same (close to 2 hours). However, with the online version this 
also includes the execution of the test suite, whereas with the 
greedy version it only includes the generation, and the execu-
tion would need to be performed separately. 

Overall, we prefer to use the online exploration algorithm 
when working on models for systems where test execution 
takes non-trivial time. One example is when we are evolving 
the models and trying to determine the impact of the modifica-
tion on test results. In these cases, the algorithm quickly pro-
duces a variation over different parts of the model. If we want 
to focus this variation on specific parts of the model, we use 
scenarios to guide the generator to only consider these parts 
and the algorithm to produce a variation over these chosen 
parts. Scenarios are a way to tell the generator to ignore some 
steps completely, use a specific sequence to start every test, 
and to limit the number of times a test can contain some steps. 

If we need the ability to execute large test suites, we have 
found the greedy or even the random approach to work better. 
When the tests execute fast (e.g., testing middleware or appli-
cation logic), it is possible to run a large test set fast even on a 
single multi-core machine. In such a case, in the time it takes 
for the optimization approaches to produce the test set, the 
random selection and its online execution have very likely 
already achieved a high coverage score and also covered addi-
tional combinations. For slower to execute cases such as GUI-
based testing, some of these benefits may also be achievable 
with large-scale testing tools such as Selenium Grid (e.g., 
overnight or over the weekend using a large set of machines) 
when we want to perform very extensive test runs. 

One of the main considerations for us is the fast evolution 
of the test models. Modern software development is fast paced 
and changes are frequent, especially with agile software devel-
opment practices. In such environments, we prefer the online 
test generation and execution approach. This allows us to ver-
sion control only the test model (as opposed to thousands of 
tests), generate and execute the tests, modify the model and 
repeat. However, we also find it useful to generate an offline 
test suite for cases where we want a specific set covered every 
time, e.g., one larger set executed to provide a high overall 
model coverage once the external test interfaces have suffi-
ciently stabilized. 

This also brings us to the single target optimization algo-
rithm. While the larger test suites generated by the greedy and 



online optimization algorithms generally also cover the re-
quirements defined in those models, and in many cases a single 
test case covers many requirements, there can still be value in 
specific test cases. For example, they are useful to show man-
agement and domain experts how specific test requirements are 
covered by a concise set of test cases, or how specific paths 
through the model are formed by the generator. They can also 
be used as a smaller set of offline test cases to support a larger 
online test generation and execution process. 

The results shown in Table 5 for the single target optimizer 
also highlight an important finding. If one assumes a coverage 
requirement that would need about 40 steps to reach it, using a 
test length of 50 sounds reasonable. However, Table 5 shows 
how coverage requirements can often be more easily found by 
generating much longer test cases and then having the tool 
minimize them. As noted, the probability calculation presented 
in section  IV- C can be a useful tool to set these parameters. 

One advantage of online testing compared to its offline 
counterpart is the ability of the former to adapt to responses 
and state changes of the SUT on the fly [1], e.g., when testing a 
non-deterministic system. While the algorithms we have pre-
sented mostly assume a deterministic test response, the online 
version can also adapt to non-determinism, with the explora-
tion becoming the estimation of future paths, and each estimate 
is re-calculated for each new step. 

As shown in Figure 6, the optimizations help achieve a 
more diverse coverage according to the defined score weights 
when compared to the random choice. We also found it useful, 
in practice, to add random variation to the generated test cases, 
to avoid expert bias, i.e., cases not considered by the human 
expert but exercised in practice. We find that the generation 
and optimization approaches based on our diverse coverage 
score (greedy and online look-ahead) work well to achieve 
such goals. Practically, they focus on achieving the given mod-
el coverage criteria and interleave these with elements of ran-
domness in different parts. That is, the result may not be fully 
optimized to produce the smallest possible test sets, but gener-
ally, we prefer this over too aggressive optimization. This pro-
vides a good tradeoff between generating huge random test sets 
and only generating manually defined specific test sets, which 
do not make use of the large scale capacity of test generators 
and are subject to expert bias in what is tested. 

VI. RELATED WORK 

Test optimization in MBT has been a popular research topic 
with various tools and approaches being implemented. Tools 
such as Conformiq [3], Uppaal [4], and Spec Explorer [5]  use 
customized modelling languages, and static analysis-based 
approach with symbolic execution and constraint solving to 
optimize test sets. Mostly these approaches target offline test 
generation, while some work [6, 4] has also made use of two-
phased test generation where static analysis is first performed 
and the resulting information is used to aid in online test gener-
ation. In contrast, our approaches are targeted to cases where 
such static analysis is not available due to the complexity of the 
modeling language and environment. 

Various approaches using general-purpose programming 
languages for modelling have also been presented. Model pro-

grams similar to ours are used in MBT tools such as Spec Ex-
plorer [5], PyModel, NModel [10], and ModelJUnit [1]. All of 
these tools use variations of random search for test selection. 
Spec Explorer, PyModel and NModel support guiding test 
selection through user defined scenarios which slice the model 
to focus test generation around the specific parts of the model. 
Similar scenarios are also supported in our generator, and these 
can be used together with the optimization approaches we 
presented to focus testing on specific model parts. 

A black-box optimization approach for test generation from 
models expressed using general purpose modelling languages 
is also available with ModelJUnit [13]. It supports executing 
the test model in a simulation mode as a pre-analysis phase 
before starting the actual test generation. Possible sequences of 
steps observed in these runs are collected and used to guide the 
actual online test generation in the following phase. However, 
this approach does not consider the state of the model, which 
defines what paths are available, and thus the set of paths as-
sumed by the optimization analysis are different from the actu-
al ones available during generation. The difference to our ap-
proaches is that we do not use a separate pre-analysis phase and 
produce accurate results where the exact paths and impacts on 
coverage are known. 

TEMA [15] is a MBT tool applied in the smartphone do-
main. It is also support online testing for Android devices, 
based on a form of random selection. The tool is mainly used 
to test applications through their UIs, similarly to the way we 
tested the iTrust web application through its UI in Section  IV-
 A. TEMA targets a similar test domain in GUI-based testing 
but does not provide optimization approaches such as ours. 

The techniques presented in this paper can also be viewed 
as a multi-objective test optimization problem. We aim to cov-
er the items defined for the scoring function in Section II, 
which can be seen as a fitness function in the terms of search-
based testing (see e.g., [16]). The algorithms we apply for 
coverage score optimization can be seen as a dynamic multi-
object optimization algorithm for the test suite. Various ap-
proaches in search-based optimization have been applied be-
fore [16] but none in our knowledge to model-based test gener-
ation with black-box constrains. In fact, we are not aware of 
previous work in MBT for optimizing a set of coverage criteria 
as diverse as the one we optimize in this paper. 

A multi-objective approach to test suite optimization for 
product lines is presented in [17], targeting objectives such as 
cost of test case, cost of test requirement and product variants. 
Test coverage is considered as single coverage requirements on 
the test model as opposed to our extensive model variation 
coverage support. An interesting aspect to integrate with our 
work could be the association of cost to certain test targets as 
part of the coverage score function. 

In software testing and verification, various combinations 
of static analysis and (random) test data generation have been 
used. For example, directed automated random testing (DART) 
[18] combines static analysis and observations about the run-
ning system with random inputs to guide it towards new paths. 
Java PathFinder (JPF) [19] enables generating test paths based 
on a combination of symbolic and concrete executions.  While 
these are different testing approaches than MBT, combining 



the information from these types of different sources with test 
generation (similar to [6]) and the approaches presented in this 
paper could be an interesting future research topic. While it 
may be prohibitive in terms of wait time to perform such ex-
tensive pre-analysis, a possible approach could be to perform 
this as a background process during modelling similar to what 
is described for executing unit tests in [20]. 

In general, a lot of work in automated test generation tar-
gets the traditional code coverage as a test target. When addi-
tional test coverage targets are considered, these are typically 
specific coverage requirements such as labels on the test mod-
els [21]. In addition to the optimization algorithms we present-
ed in this paper, the coverage scoring method itself extends 
these with wider generic model coverage criteria (the model 
structure elements), supported by domain-specific criteria (user 
defined state and variables). 

Random testing has been shown to work well in various 
situations [22, 23], and some criticism has been voiced on the 
effectiveness of guided random testing approaches when the 
same coverage can be achieved by simply executing a large set 
of random test cases in the same time [23]. We share this view 
in noting that executing a very large set of random tests should 
yield the same or even higher coverage over time as our opti-
mization approaches do.  The aim of our approaches is to prac-
tically choose a reasonable subset of such a larger set under 
different use cases.  

VII. CONCLUSIONS 

In this paper, we presented three different approaches to 
test optimization in black-box model-based testing. We then 
evaluated their performance and provided comparisons on the 
strengths and weaknesses of each. Our evaluation highlights 
the benefits of these different approaches over the traditional 
random choice and their usefulness in different contexts. The 
online version works well to provide added coverage when 
prototyping slow to execute test cases. The greedy offline op-
timizer gives a test suite for higher overall model coverage. 
The requirements targeting optimizer can help provide specific 
test cases where useful. Combining potential benefits of these 
approaches with static analysis where possible would be an 
interesting future research topic. Domain-specific applications 
of these approaches, including customizations of algorithms 
and modelling languages are also interesting future topics. 
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