
A Comparison of Three Black-Box Optimization

Approaches for Model-Based Testing

Teemu Kanstrén

VTT, Oulu, Finland

UofT, Toronto, Canada

teemu.kanstren@vtt.fi

Marsha Chechik

University of Toronto

Toronto, Canada

chechik@cs.toronto.edu

Abstract—Model-based testing is a technique for generating

test cases from a test model. Various notations and techniques

have been used to express the test model and generate test cases

from those models. Many solutions use customized modelling

languages and in-depth white-box static analysis for test genera-

tion. This allows for optimizing generated tests to specific paths

in the model. Others use general-purpose programming lan-

guages and light-weight black-box dynamic analysis. While this

light-weight approach allows for quick prototyping and easier

integration with existing tools and user skills, optimizing the

resulting test suite becomes more challenging since less infor-

mation about the possible paths is available. In this paper, we

present and compare three approaches to such black-box optimi-

zation.

Keywords—model based testing; test automation; evaluation;

test generation; optimization

I. INTRODUCTION

Model-based testing (MBT) [1] is a technique for generat-
ing test cases from a test model. As opposed to manual test
design, where a test expert designs test cases one by one, in
MBT the test expert designs a test model to represent a set of
test cases and uses an MBT generator tool to generate a set of
test cases from it.

As the generator can potentially create a very large number
of test cases for any non-trivial model, various optimization
approaches are often applied to choose which test cases to
include in the generated set. Many optimization solutions [2, 3,
4, 1, 5] use a custom notation combined with a specialized
runtime environment to represent the test model, allowing for
performing an in-depth white-box static analysis, e.g., symbol-
ic execution, of the model. Tools such as constraint solvers can
then be applied on this information to find test cases that yield
short paths to reach given coverage targets [3, 6, 5]. Some use
manually crafted scenarios to guide the generator towards
specific paths [2].

In our work, we have aimed to provide light-weight testing
solutions suitable for easy industry adoption and to support a
fast iterative testing process through rapid prototyping of test
models, test generation, and test execution, while still provid-
ing good test coverage and useful test results. We use a gen-
eral-purpose programming language (Java) to represent our test
models, allowing use of all language features, tools, libraries,

networked services, and the standard (Java) virtual machine
(JVM) runtime. This enables using existing development skills
and toolsets such as test libraries and environments, integrated
development environments, and continuous integration sys-
tems, along with any features they provide. Our open-source
test generator called OSMO Tester [8] has been successfully
applied, together with a number of industry partners, to test
large scale real industry systems.

Our test model is as an executable program, executed in
different ways by the generator to produce test cases. We allow
use of different, evolving versions of the language platform
(virtual machine) and language features to create the model and
run the generator on it. As the model can make use of third-
party libraries and networked services, we assume no access to
source code or even all binaries for analysis. Such limitations
are common in practical settings (e.g. [7]). Thus, we cannot
apply approaches based on white-box static analysis in this
context but rather rely on dynamic analysis and information
available at runtime. We call this type of test generation model-
based black-box test generation. While there has been exten-
sive research into optimizing test generation using static analy-
sis based approaches, little work exists in optimizing model-
based black-box test generation.

In this paper, we describe three algorithms for optimizing
test generation in this type of an environment. All of them are
based on generating a large set of potential tests in parallel and
picking the most optimal ones based on given coverage criteria.
One is targeted at online testing where test generation and
execution are interleaved. Two others are targeted at offline
testing where the test set is first generated and later executed in
a separate phase. We compare the strengths and weaknesses of
the three algorithms and make usage recommendations.

The rest of the paper is structured as follows. Section II
presents background on our modelling notation and test genera-
tor. It also defines how we assess achieved test coverage over
the test model. Section III presents our optimization algo-
rithms. In Section IV, we evaluate each algorithm individually
in terms of achieved coverage, generation time and test length.
In Section V, we compare the different approaches to each
other. In Section VI, we compare our results with related work.
We conclude in Section VII with a summary of the paper and
discussion of future research directions.

II. BACKGROUND

To provide background for the following sections, we first
briefly outline our modelling notation and model structure and
describe our notion of test coverage, including how model
elements are used to calculate coverage.

A. Modelling Notation

OSMO Tester uses a generic programming language (Java)
as the modelling language. To generate test cases, the test gen-
erator executes different paths through the model which is
often referred as a model program [9, 10].

In Figure 1, we illustrate our notation using a simple test
model for a counter which can perform two functions: increase
(the value of the counter by one) and decrease (the value of the
counter by one). For illustration purposes, we will later use ‘+’
to represent the increase step and ‘-‘ -- the decrease step.

In this model, the system under test (SUT) is represented by
the sut variable. This example illustrates an online testing ap-
proach where the test steps are concretely executed against the
SUT as they are generated. In an offline approach, the test steps
yield a script which also includes the input for the SUT and the
checks to perform against its states and output.

1: public class CounterModel {
2: @Variable //annotation to identify interesting model state to generator
3: private int value = 0;

4: private Counter sut = new Counter();

5: private Requirements req = new Requirements();
6: @BeforeTest

7: public void start() {

8: value = 0;
9: sut.reset();

10: }

11: @Guard("decrease")
12: public boolean allowDecrease() {

13: return value > 1; //when true, “decrease” is enabled

14: }
15: @TestStep("decrease") //enabled when above guard true

16: public void decreaseCounter() {

17: value--; //updates our model state
18: sut.decrease(); //execute test step on SUT

19: assertEquals(value, sut.value); //test oracle, check model vs SUT

20: req.covered(“decrease”); //user defined coverage requirement
21: }

22: @TestStep("increase") //has no guards, so is always enabled

23: public void increaseCounter() {
24: value++; //updates our model state

25: sut.increase(); //execute test step on SUT

26: assertEquals(value, sut.value); //test oracle, check model vs SUT
27: req.covered(“increase”); //user defined coverage requirement

28: }

29: @CoverageValue(public String zero() {
30: return “” + (value == 0);

31: }

Figure 1. Example counter model program.

The two basic model elements here are the methods anno-
tated with @TestStep and @Guard. The @TestStep methods
represent test steps that are executed by the test generator at
different times to produce a test case. In MBT, these are also
referred to as actions [11] and action methods [5]. Each test
step invokes a function on the SUT, updates the model state, or
checks the SUT state and output against the expected values
(the test oracle). A sequence of these steps forms a path
through the model, producing a test case.

To define the potential paths, i.e., the steps the generator
can take in a specific model state, the test generator executes
all @Guard-annotated methods (line 11 in Figure 1). These
define rules for enabling test steps. When the guards for a step
become true, the step is enabled, and at each point the genera-
tor can choose to take any of the enabled steps. The association
of guards to steps is based on matching the names given as
parameters to the annotations. For example, in the beginning
value is 0 and thus the guard for decrease is false, meaning the
test can only start with the increase step.

B. Specifying Coverage Values

In our example, the current value of the counter is stored in
the model as the value variable. The annotation @Variable
identifies this variable to be of relevant for the generator to
track for coverage. To provide a test oracle, the value variable
is constantly updated to match the expected value as result of
actions executed against the SUT (lines 17 and 24). These
actions are the test steps invoking the increase and decrease
functionality of the actual SUT (lines 18 and 25). The test
oracle compares the actual value in the SUT with the expected
value in the model (lines 19 and 26).

We also define a set of additional terms for elements of the
model when calculating our test coverage. We use the term
step-pair to refer to two steps following one another in a test
case. For example, a path of ‘++-++’ would have three unique
step-pairs: ‘++’, ‘+-‘, and ‘-+’.

The user can also define their own paths of interest and
functions to give values that the generator should track for
coverage purposes. Coverage requirements (lines 20 and 27)
can be used to tag specific paths of interest through the model.
Methods annotated with @CoverageValue annotation (line 29)
can be defined to return String values to record as covered for
specific paths. Typically, these record specific instances or
combinations of interest for model state. In our example, it
records whether the value `zero’ is covered by a path. As such
functions are typically related to model state, we refer to them
as user defined state coverage. When two different values are
observed in a sequence inside a test path, the term state-pair
coverage is used. State-pairs are recorded similarly to step-
pairs but with the user defined state values.

The annotations, variable names and values, and method in-
formation are accessed at runtime using the standard JVM
reflection support, maintaining the black-box quality of our
approach.

C. Coverage Calculation

In order to evaluate model coverage achieved by the gener-
ated test cases, our generator keeps track of the sequence of test
steps it has taken, and any coverage values it has observed
during these steps. Using MBT terminology from [11], we
support data coverage (state values and their pairs, model vari-
ables), model structure coverage (test steps and their pairs), and
model requirements coverage.

Users can guide the tool to prioritize coverage of specific
model elements according to current testing needs. This priori-
tization is achieved by changing weights of the different model
elements. For example, one can focus on specific model ele-
ments by zeroing the other weights or tune state weight lower

for a model with a large state-space to limit focus on state at
the expense of other criteria.

The model elements used for coverage calculation and their
default weights used by our tool are given in Table 1. The
default weights have been determined based on our experience
in working with different test models and generating test cases
for those in order to achieve overall high coverage.

N Model Element Default Weight

1 Variables 10

2 Variable values 1

3 Test steps 20

4 Step pairs 30

5 Requirements 50

6 User defined states 50

7 State-pairs 40
Table 1. Coverage elements.

Using E to represent a model element and W its weight, the
formula to calculate the coverage score is

∑

That is, the number of unique values observed for each
model element is multiplied by the weight for that element, and
the sum of these forms the coverage score for a test case. For
example, a test case TC1 with a path of ‘++-++’ would cover 1
variable (value), 3 variable values (1,2,3 for value), 2 steps
(‘+’,’-‘), 3 step-pairs (‘++‘, ‘+-’, ‘-+’), 2 requirements (‘in-
crease’, ‘decrease’), 1 user defined state (‘false’), and a single
state pair (‘false-false’). The score of this path is thus
10*1+1*3+ 20*2+30*3+50*2+50*1+40*1 = 333.

The coverage score for a test suite (all test cases generated
up to current point) is calculated by adding up all items in all
test cases and then applying the formula. For example, suppose
a test suite consists of TC1 defined above and a test case TC2
covering the path `++_+’. If TC2 was the only test case, is
value would be 10*1+1*2+20*2+30*4+50*2+50*2+40*3 =
492.

The difference to TC1 adding a new step-pair ‘--', which al-
so leads to value zero for the counter variable and thus produc-
es one new state ‘true’ and two new state-pairs ‘false-true’ and
‘true-false’. However, since TC1 is already in the test suite,
adding TC2 to it only increases the score of the suite by the
values not already covered by any test in the suite. These are
the new step-pair and the new state-pairs. Thus the suite score
rises by 30*1 (step-pair) + 1*50 (state) + 2*40 (state-pairs) =
160. The final coverage score for this test suite is then 333+160
= 493. If TC2 was added to the test suite first, adding TC1
would only increase the suite score by 1 as the only element
value not covered by TC2 in TC1 is the counter variable value
3. In general, our scoring function guarantees that the score of
a test suite is independent on the order of adding test cases.

III. OPTIMIZATION ALGORITHMS

In this section, we describe our optimization algorithms.
We first describe the online optimization algorithm (Section 3-

A), followed by the two offline algorithms (Sections 3-B and
3-C).

A. Online Algorithm

Online testing interleaves test generation with test execu-
tion. Once the generator chooses a test step, it immediately
executes it against the SUT; once the step has finished execut-
ing, it chooses the next step, etc. For us, online testing pro-
vides immediate test results and gives fast feedback to the test
generation, modelling and evaluation process, and thus we
want online test generation to be as fast as possible.

This type of real-time online test generation prevents us
from doing optimization beforehand as we need to support
cases where changes are made to the model, the generator is
immediately invoked, and tests are generated and executed. To
support this scenario, our online optimization algorithm ex-
plores sets of potential future steps while the previously chosen
step is still executing. In our experience, this is suitable for a
set of systems where executing a test step takes a non-trivial
amount of time, such as testing web- or smartphone-
applications through a graphical user interface (GUI). By mak-
ing use of such delays, the algorithm can help optimize the
online test coverage in parallel with test case execution.

The high-level algorithm is described in Figure 2. When the
generator has chosen a step to execute (using the algorithm in
Figure 2) but before it has executed it, it starts the exploration
of the next step in parallel threads (or concurrently on a net-
worked larger machine as discussed in [12]). It takes the se-
quence of steps so far executed (LS) for the current test case
and the exploration depth (D) given by the user as input. The
exploration depth defines how many steps the algorithm tries to
look into the future in parallel to current step execution.

Input: current model instance and state CM used for concrete test generation,
 list of steps LS currently taken in test case, the exploration depth D.

Output: The next step to take.
1. execute all model guards on CM to construct the set of enabled steps ES

 Set the set of potential future paths PP to empty set ∅.
2. for each step S in ES

3. create a new instance M of the model program
4. set M in exploration mode

5. execute all steps in LS on M to reach current test state for M

6. execute S on M to reach a new state NS
7. decrease D by 1

8. if D > 1, repeat from 2

9. else add this path for M to PP
10. set value for best path score B to 0, create new empty set of best paths SB

11. for each potential path P in PP

12. calculate coverage score CS for P
13. if CS > B, clear SB and set B as CS

14. if CS == B, add P to SB

15. return a random choice from SB as the next step to take

Figure 2. Algorithm for online optimization.

The starting point is the current concrete model instance
CM (and its state) used to generate test cases. To explore the
potential future paths, the algorithm starts with the set of ena-
bled steps ES, that is the set of steps in CM where no guard
returns false, as explained in Section II-A. For each step S in
ES, a new instance M of the model program is created. This is
set to exploration mode by invoking @ExplorationEnabler
annotated methods on the model. This should, for example,
replace a reference to a real SUT with a mock version that

invokes no real functionality and thus has no visible side-
effects when steps in M are invoked. The current set of steps
LS is executed on this M to achieve the current generation state
for M. This is repeated for each S, so that each S has its own
instance of M that is in the same generation state.

For each of these instances of M, the associated S is in-
voked. If the exploration has at this point reached depth D, the
coverage score for each M is calculated and that is the score
that is given to this path. If D is not yet reached, all these exe-
cuted paths for the different instances of M are taken as the
new sets of steps LS and the algorithm starts from beginning
for all these, with the value of D reduced by one.

In the end, all the final paths are taken and the highest scor-
ing ones are collected. If there are several, the one that has the
highest score fastest (in fewer steps) is taken. If several are still
equal, one is chosen at random. The next unexecuted step on
this path is given as a choice for the generator.

Once the execution of the previous step has finished, the
choice given as the next step is the result of this parallel explo-
ration. If the exploration finished before the actual execution of
the previous step, the choice is immediate as the result is avail-
able. Otherwise, the algorithm waits for the parallel exploration
to finish. This may incur some extra delay, which can be miti-
gated by forming an “exploration buffer”. This refers to start-
ing the exploration for the following step after the one that was
explored already, in cases where the exploration finishes before
the concrete execution of a parallel step does.

For example, assume we start concrete execution of step 1
and exploration of step 2 at the same time. If step 2 finishes
exploration before step 1 finishes executing, exploration can
proceed to step 3. This helps even the differences between
steps that take different times to execute and explore.

B. Offline Algorithms

Our offline optimization algorithm has two different varia-
tions. One aims to optimize for a large test set covering a high
variation of the test model elements, using the coverage formu-
la presented in Section II.B. The other one aims to optimize for
minimal test lengths to cover specific targets in the test model.

Greedy Variation Optimizer. The version targeting high
variation is a form of greedy algorithm. It is described in Fig-
ure 3. The main arguments it takes from the user are the popu-
lation size (PS) and the timeout value (TO). The number of
parallel generators (P) to run can also be configured but de-
faults to the number of processing units for the system.

The greedy algorithm runs P versions of generators G in
parallel. In Figure 3 This is represented as G1-P meaning there
are P different instances of test generators. The different ones
are referred to as Gx, where x stands for one value from 1-P, or
one instance of the generator. Each Gx is configured with the
test generator configuration (GC) provided by the user and
automatically populated with a unique randomization seed (to
produce different test cases). Each Gx generates a given num-
ber of new test cases (PS). The new generated set of tests GS
for Gx is merged with the existing test suite TS (which starts
empty). Every T in TS is then iterated and highest scoring tests
are added to the existing test suite TS for each Gx. First, the test

T that has the highest coverage score in GS is added to TS and
removed from GS. This process repeats until GS is empty or no
T gets a positive score. Same procedure is done for each Gx
generating a new GS and merging with TS.

Finally, once the overall generation timeout TO is reached
or TS has not changed throughout the entire iteration, the pro-
cess is stopped for that Gx. Once all Gx are finished, the TS for
all Gx are combined to form the final optimized test set OS
which is returned. This is done similar to creating the set for a
single generator, starting with the highest scoring test in the
overall set, followed by the test that adds most to this test
(suite), and so on.

Input: generator configuration GC, population size PS, timeout TO,

 degree of parallelism P.

Output: Generated test suite OS

1. create P instances of test generator as G1-P, configured with GC

2. for each Gx, in G1-P run the following in parallel

3. create empty test suite TS (∅)

4. create unique randomization seed for Gx

5. use Gx to generate PS new test cases as the test set GS

6. add tests in TS to GS

7. clear TS, setting TS to empty set ∅

8. for each test T in GS

9. calculate added score AS for T when added to TS

10. add highest scoring T to TS and remove it from GS

11. if any T remains in GS with AS > 0, iterate from step 8

12. if timeout TO has been reached, stop generation with Gx

13. else if TS scores higher or is shorter than previous TS

14 continue from line 5

15. else stop generation with Gx

16. wait for all Gx to finish

17. merge results for all Gx using lines 8-11 as output set OS

18. return OS

Figure 3. Greedy algorithm for offline optimization.

Single Target Optimizer. The single target offline optimiza-
tion approach, described in Figure 5, aims to generate a set of
test cases where each coverage requirement is covered by a
single test case of the shortest possible length. This can be
useful if specific tests are needed but we want to have them
generated from the model as opposed to manual scripting.

This algorithm starts by generating test cases as random
walks through the model, using a set of P test generators G1-P
running in parallel. Each Gx is used to generate a given number
PS of test cases. When a Gx finds a new test case T that covers
a previously uncovered requirement R, it changes the global
generator state to target finding R and to only allow the steps in
T. T now becomes the reference test, called BT, for covering
R. Upon finishing their iteration of generating PS tests, each Gx
reconfigures itself with the new global generator state. This
means that the goal of every G is to find a shorter path to cover
R. The set of R to find can be given to the algorithm or it can
pick them up from the model as it generates tests from it.

To further help the generators find potentially shorter paths,
the global state is modified after each iteration to look for only
those tests which are shorter than BT. Each Gx is configured to
allow each available step one time less than in BT. If any Gx
finds a new test T with a shorter path to R, this T becomes the
new BT for R and all Gx reconfigure to target shortening this
new BT. After test timeout TO is reached or the path cannot be

shortened any more (it only has instances of one step), the final
BT for R is added to the final output set OS.

Finally, the search is restarted with the goal of finding a
new test for an uncovered R. The previously covered require-
ments are ignored at this point. The process is repeated until all
requirements have been covered or suite timeout SO is reached.

Input: generator configuration GC, population size PS,

 suite timeout SO, test timeout TO, degree of parallelism P.

Output: Generated test suite OS with one test case for reaching each

 requirement R

1. create P instances of test generator as G1-P, configured with GC

2. create unique randomization seed for each Gx in G1-P

3. while SO has not been reached

4. run each Gx in parallel to generate PS test cases as test suite TS

5. if any test T in any TS for any Gx reached a new uncovered R

6. set R as target to cover for each Gx

7. set best test BT for R to T

8. for each step S in BT

9. reconfigure all Gx to only allow the steps in (BT – S)

10. use Gx to generate PS new test cases TS2

11. if any test T2 in TS2 is shorter than BT, set BT to T2

12. iterate from line 8 until minimal BT achieved or TO is reached

13. add BT to final output test suite OS

14. iterate from line 1 until SO is reached or all requirements are

covered

15. return OS

Figure 5. Single target algorithm for offline optimization.

IV. EVALUATION

In this section, we describe the evaluation of the algo-
rithms. Two different systems were used in the evaluations.
One is a laptop with dual-core Intel Core i5 2.67GHz CPU.
With hyper-threading, it has 4 virtual processing units, and our
evaluations on it run 4 tasks in parallel. The JVM is configured
with 2GB maximum heap size out of 4GB physical RAM. The

second system is a desktop with quad-core Intel Core i7
2.8GHz CPU. With hyper-threading, it runs 8 parallel tasks.
The JVM is configured with 20GB heap out of max 24GB.

While we have experience with several industry models, we
cannot describe these due to confidentiality reasons. Thus our
evaluations use three publically available models. Two of
these, a test model for a movie reservation system (ECinema),
and for a GSM SIM card [1], are ported from the ModelJUnit
MBT tool [13]. The third model was previously developed by
us for a web application called iTrust, which is a role-based
healthcare application [14]. While these are not actual industry
models, in our experience the relevant complexity is similar in
terms of relevant structural coverage elements of the model
such as states, and test steps. The models are available as part
of our tool website and repository [8].

Table 2 summarizes the sizes of these models in terms of
their model elements (used in coverage calculations). The
number of step-pairs also considers the start of test generation
as a separate step, thus increasing the number of pair count by
the number of steps. For example, SIM has 15

2
+15

(225+15=240) step-pairs.

Model Steps Step-

Pairs

States State-

Pairs

Reqs

ECinema 19 177 9 40 17

SIM 15 240 2.6k+ 22k+ 32

iTrust 40 800 47 1124 11

Table 2. Model sizes.

We used the default coverage weights described in Table 1
with one exception. Relative to the other model elements, the
SIM model had a large number of possible state and state-pair
values. Thus we set its state weight to 5 and state-pair weight to
1 in order to avoid the huge state space taking over all other
coverage criteria. This is a typical example of tuning the cover-
age weights per domain as discussed in Section II-B.

Model Alg. Steps Step-Pairs States State-Pairs Requirements

Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg

ECin. Rand 16 19 18,7 143 163 156 9 9 9 35 37 36,9 16 17 17

 Expl-1 18 19 19 154 168 161 9 9 9 37 37 37 17 17 17

 Expl-2 19 19 19 169 172 172 9 9 9 37 37 37 17 17 17

SIM Rand 15 15 15 240 240 240 591 772 684 2562 2969 2770 30 32 30,1

 Expl-1 15 15 15 240 240 240 1619 1985 1799 4396 4998 4639 32 32 32

 Expl-2 15 15 15 240 240 240 2464 2670 2562 7111 7791 7413 32 32 32

iTrust Rand 40 40 40 463 573 528 40 47 46,6 277 519 383 9 11 10,7

 Expl-1 40 40 40 649 800 762 45 47 46,9 410 685 528 9 11 10,9

 Expl-2 40 40 40 643 777 737 46 47 46,7 707 906 804 11 11 11

 Table 3. Model coverage for 100 runs.

Figure 4. Exploration time vs execution time.

0

1000

2000

A C E G J L N P R T V X AA CC EE HH KK MM

Random

Exp-D1

Exp-D2

A. Online Algorithm

For this algorithm, we are interested in the improvements of
coverage when compared to the baseline approach of random
step selection. We are also interested in the time it takes to
explore each step compared with executing the previous step.
That is, we are interested in the cost and benefit of exploring
the next step(s) while the previous are executing.

To set our evaluation parameters, we did an initial scalabil-
ity study using the three models with 10, 20 and 30 steps, no
guards, and exploration depths of 1, 2, and 3. This means that
the algorithm always had S

D
 steps to explore at every point

(which is also the worst case complexity of the algorithm),
ranging from 10

1
 to 30

4
, or 10 to 27000 steps. To set a realistic

test length parameter, we ran all these combinations with test
length up to 500 and measured the time for each length. As the
exploration algorithm needs to repeat the current steps in the
current test case for every explored future step, long test cases
can cause it to slow down.

We found that at around 100 test steps with a model of 20
steps and depth of 2, the average time was around 200 milli-
seconds, which in our experience is a reasonable time for many
GUI testing environments to take to execute a real step. For
depth of 3, the time to explore a step for a model of this size
was close to three seconds. Thus we chose to use depth of 2 as
a realistic maximum depth of exploration. We also set 100 as
our test length parameter since test cases observed in real pro-
jects were seldom longer than that.

Coverage. Table 3 shows the coverage results for our actual
evaluation test models. In the left column, Rand refers to a
random choice algorithm Expl-1 to our exploration algorithm
with depth of 1, and Expl-2 with depth of 2. Each of these was
run 100 times with different randomization seeds to produce
100 different test suites. For each algorithm, the table shows
the minimum, maximum and average number of each elements
these 100 test suites covered.

From this, we can see that the exploration algorithm outper-
forms the random selection for all our coverage criteria. An
interesting detail is how the iTrust Expl-2 case achieves lower
step-pair coverage than iTrust Expl-1. We speculate this is due
to the algorithm putting more focus on covering a much higher
number of state-pairs, which is due to the two having the same
default weights (step-pairs and state-pairs).

Timing. To evaluate the timing aspect of the algorithm, we
used the iTrust system as a test subject as it was tested through

the web-based graphical-user interface (GUI), which in our
experience is a good candidate platform for parallel optimiza-
tion due to test execution delays. The experiment was run on
our laptop system, also running the SUT, which includes a
MySQL database, a Tomcat webserver, and the iTrust applica-
tion itself. Test execution used the Selenium WebDriver
(Chrome) component, allowing control of an actual browser to
simulate a test user using the application. Thus, the flow is the
same as with an actual user, with all the requests going through
the whole SUT from the browser to the backend database and
back.

The results are visualized in Figure 5. Random refers to the
time it takes to choose a step and execute it using the random
step selection algorithm. As the random choice is practically
instantaneous, we use it as a baseline comparison to evaluate
the overhead of the parallel exploration. Exp-D1 refers to ex-
ploration time for the next step while that step is running, using
the exploration depth 1. Exp-D2 refers to the same with depth
2. For the sake of space and readability, four of the highest
spikes (6s, 4s, 3s and 3s) are not shown in the figure. In all
these four cases, the exploration time was much lower than test
execution.

To briefly summarize the interesting parts, exploration at
depth of 1 (Expl-D1) is in all cases faster than the execution of
the concurrent test step (Random). Exploration at depth of 2
(Expl-D2) is in most cases much slower than the step execution
time. This means that, for our setup, the depth of 1 is very
reasonable, while depth of 2 is slower, although it does also
achieve a much higher exploration score that depth 1.

Our goal in this study was also to evaluate the general fea-
sibility of the approach to achieve near real-time test generation
and execution. Here, this is true for depth 1. With optimizations
and faster computing resources (e.g., [12]) we believe this is
within reach for depth 2. Of course, this also largely depends
on concrete test execution speed, which may give us more or
less time for exploration. In our experience, long delays are
common in many cases, specifically, with GUI-based testing.

As shown in Table 3, depth 1 already gives a good increase
in coverage over random choice. As shown in Figure 5, depth 1
also adds no extra delay to the test execution cycle, making it
virtually free while improving coverage. We have already used
this algorithm in practice as a quick prototyping aid for work-
ing with the different models, combined with other tools such
as scenario definitions.

Metric ECinema SIM iTrust

Min Max Avg Min Max Avg Min Max Avg

Tests 11 14 12,4 2311 2423 2362 55 61 58

Length 618 824 714 126348 131987 128722 3568 4011 3784

Steps 19 19 19 15 15 15 40 40 40

Step-Pairs 171 177 175 240 240 240 797 800 799

States 9 9 9 2527 2607 2571 46 46 46

State-Pairs 40 40 40 21513 22375 21916 1074 1078 1077

Reqs 17 17 17 32 32 32 1 1 1

Time(s) 6 14 9 5166 10498 7564 18 39 25

Table 4. Model coverage for 100 runs with greedy algorithm.

B. Greedy algorithm

For this algorithm, we were interested in evaluating how
well it covers variation over the test model structure. We were
also interested in the time it takes to achieve the coverage and
length of the resulting test cases.

Coverage. Table 4 shows the coverage results for the greedy
algorithm in similar format to Table 3. Comparing these tables,
Greedy outperforms Random and Exploration results in most
cases. The exception is that in a few runs, the number of cov-
ered step-pairs for ECinema and states for SIM is lower for
Greedy than the maximum achieved by some exploration run.
That is, while Greedy performs much better than exploration in
the long run, it may sometimes perform slightly worse for
some properties.

Figure 6 shows the overall coverage score evolution for one
run of each algorithm as new tests are added to the test suite.
The coverage score shown is the overall score of the test suite
as shown in Section II- II.C. The obvious observation is how
random selection yields much lower coverage score than the
other algorithms. What is not so clearly visible is how the ex-
ploration algorithms score slightly higher than greedy in the
beginning, with greedy surpassing depth 1 at test 30 and depth
2 at test 100.

Figure 6. Coverage score evolution over 200 tests.

Timing. Unlike the online exploration algorithm, the greedy
algorithm takes time to start and build the test suite for later
execution. In this case running the greedy algorithm with our
desktop configuration takes about 165 minutes. This is the
delay one would have to wait before starting to execute the
tests. Compared to the online exploration algorithm, the online
version has no delay in the start and the overall generation time
for the exploration at depth of 1 is about 20 minutes and for
depth 2 about 105 minutes.

C. Single Target Algorithm

To evaluate the single target algorithm, we started by inves-
tigating the limits of the algorithm. To do this, we created the
model shown in Figure 7. This model has 10 test steps, each
always enabled. Thus the probability of taking any one of them
with random choice is 10%. It has one requirement to cover,
and the length of the path that needs to be taken to cover this
requirement can be configured by the target parameter. Differ-
ent values for this parameter were then applied with tests of
different length.

Table 5 summarizes the results, with the Tgt column show-
ing the value of the target variable and the Len column refering
to the configured length of test cases generated. The length of
the initial path for a requirement as found by the algorithm is

given in the Path column. The final reduced path was always
equal to Tgt column, which is also the shortest possible path.
This is due to the algorithm reducing the number of steps ex-
perimentally at different iterations and finally reaching the only
required steps for the requirement path (step 1 in Figure 7).

public class Model {
 private final int target; //the given coverage target

 private int x = 0; //counter

 public Model(int target) {this.target = target;}

 @TestStep
 public void step1() {

 x++; //we have to hit this line target times to cover the requirement

 if (x == target) req.covered(“target found”);
 }

 //steps 2-10 are similar to this, bringing probability of taking step 1 to 10%
 @TestStep

 public void step2() {}…

}

Figure 7. Evaluation model.

Tgt Len Path % Tgt Len Path %

5 50 5 1 30 50 - 0

5 100 5 1 30 100 70 0.02

5 200 5 1 30 200 76 1

10 50 10 1 35 50 - 0

10 100 10 1 35 100 - 0

10 200 10 1 35 200 106 1

15 50 15 1 40 50 - 0

15 100 15 1 40 100 - 0

15 200 15 1 40 200 150 1

20 50 - 0.02 45 50 - 0

20 100 27 1 45 100 - 0

20 200 27 1 45 200 - 0.16

25 50 - 0 50 50 - 0

25 100 46 1 50 100 - 0

25 200 52 1 50 200 - 0

Table 5. Single target algorithm performance.

Additionally, we used binomial distribution to calculate the
probability (the % column in Table 5) of hitting a 10% chance
(as for step 1 in Figure 7) Tgt times for Len experiments for
each row in Table 5. This gives us the theoretical probability of
finding a path to cover the requirement on each row. As can be
seen in the table, the results match the calculated probability.
For example, with Tgt 20 and Len 50, there is a probability of
2% to find a path. In this case it is not found. Similarly, with
Tgt 30 and Len 100 there is a probability of 2% to find a path,
and in this case we happen to find it. This shows how this type
of probability analysis can be used to tune the search parame-
ters when we have some idea of the complexity of paths we
need, and letting the algorithm optimize it once found.

To further evaluate the performance, we used the SIM
model as a test subject. It had a set of 35 coverage requirements
defined by its original authors, and our target was to cover
these with one test each. Table 6 shows the results for each of
these requirements using a test length of 50 steps for generation
and random choice as the initial step selection. Req is the iden-
tifier of each requirement, and Start is the length of the first test
case the random generator produced that reached that require-
ment. Steps is the length of the final test case computed by our
algorithm for that requirement.

The table shows that three requirements were not covered
at all. In order to find out the reason, we manually analyzed the
test model for the paths to reach these requirements. We found
that due to complex ways the different test steps and model
variables interact, it was not possible to reach those require-
ments in any way. While we are not the authors of the model,
we assume that this is the result of model evolution where the
requirements have not been rechecked, perhaps due to the
complexity of this process. In any case, such knowledge in
itself is valuable to better understand the test model and the
generated test cases.

Req. Steps Start Req. Steps Start Req. Steps Start

1. 5 17 14. - 27. 1 3

2. 2 16 15. - 28. 2 31

3. 1 17 16. 4 32 29. 1 3

4. 3 50 17. 2 10 30. 1 8

5. 1 7 18. 1 23 31. 3 17

6. 11 34 19. 4 24 32. -

7. 2 6 20. 2 34 33. 4 39

8. 1 12 21. 5 19 34. 4 38

9. 10 26 22. 2 24 35. 3 49

10. 1 4 23. 1 12

11. 5 19 24. 4 31

12. 1 6 25. 2 49

13. 2 31 26. 1 9

Table 6. SIM model coverage.

As for the 32 covered requirements, we found that the algo-
rithm did find the minimal path to reach each of these require-
ments in the model.

Finally, while we believe that the three models we worked
with are good representatives of practical models, we realize
that there can be more complex cases where the paths are more
difficult to minimize due to dependencies between model steps
and state variables. To evaluate such a case, we executed the
algorithm on a model with 10 steps out of which four incre-
mented a single variable x. The requirements targets were in
three different steps, each requiring a specific value (3, 5, and
10) for x. In this case, to cover the requirement, we need to
execute the right step for covering it at the exact right time.
Executing one of the steps that increments the value again
when x has the correct value (3, 5 or 10) will miss the require-
ment for that run. Thus the probability is much lower. In such a
case, we found the algorithm can find a path but reducing it to
an optimal, shortest path, takes a much longer time. This is due
to the experimental shortening performed by the algorithm not
working so well when, even after reducing step counts, cover-
ing a requirement is still highly dependent on probabilities of
step ordering.

V. DISCUSSION

Out of the three algorithms that we have presented, the
online optimizer and the greedy offline optimizer target similar
goals. Both try to optimize coverage for a variation of chosen
parts of the model for each test case and the overall test suite.
The single target offline optimizer is different in trying to gen-
erate a set of test cases where each one reaches a specific path
requirement. It is not looking for the overall variation using our
coverage score but rather for a specific set of test cases, each
with a minimal set of steps for reaching a given requirement.

As shown in Figure 6, the online exploration approach
gains coverage faster in the beginning but loses to greedy over
the long term. This is due to the online algorithm finding many
uncovered steps, states and their combinations in the beginning
but lacking vision in later test cases for how to achieve a state
from which it can again gain more coverage score. It is also
due to the states being distributed more after the initial set has
been covered. The greedy version, on the other hand, selects
from a large set of random tests, where the initial tests may not
be as good as those in the online exploration version but where
over time it finds more uncovered coverage elements in the
larger set of random tests. For generating an overall regression
test suite, a combination of these could be useful.

In our experiments, the time taken to generate both the
greedy and the online look-ahead optimization sets is about the
same (close to 2 hours). However, with the online version this
also includes the execution of the test suite, whereas with the
greedy version it only includes the generation, and the execu-
tion would need to be performed separately.

Overall, we prefer to use the online exploration algorithm
when working on models for systems where test execution
takes non-trivial time. One example is when we are evolving
the models and trying to determine the impact of the modifica-
tion on test results. In these cases, the algorithm quickly pro-
duces a variation over different parts of the model. If we want
to focus this variation on specific parts of the model, we use
scenarios to guide the generator to only consider these parts
and the algorithm to produce a variation over these chosen
parts. Scenarios are a way to tell the generator to ignore some
steps completely, use a specific sequence to start every test,
and to limit the number of times a test can contain some steps.

If we need the ability to execute large test suites, we have
found the greedy or even the random approach to work better.
When the tests execute fast (e.g., testing middleware or appli-
cation logic), it is possible to run a large test set fast even on a
single multi-core machine. In such a case, in the time it takes
for the optimization approaches to produce the test set, the
random selection and its online execution have very likely
already achieved a high coverage score and also covered addi-
tional combinations. For slower to execute cases such as GUI-
based testing, some of these benefits may also be achievable
with large-scale testing tools such as Selenium Grid (e.g.,
overnight or over the weekend using a large set of machines)
when we want to perform very extensive test runs.

One of the main considerations for us is the fast evolution
of the test models. Modern software development is fast paced
and changes are frequent, especially with agile software devel-
opment practices. In such environments, we prefer the online
test generation and execution approach. This allows us to ver-
sion control only the test model (as opposed to thousands of
tests), generate and execute the tests, modify the model and
repeat. However, we also find it useful to generate an offline
test suite for cases where we want a specific set covered every
time, e.g., one larger set executed to provide a high overall
model coverage once the external test interfaces have suffi-
ciently stabilized.

This also brings us to the single target optimization algo-
rithm. While the larger test suites generated by the greedy and

online optimization algorithms generally also cover the re-
quirements defined in those models, and in many cases a single
test case covers many requirements, there can still be value in
specific test cases. For example, they are useful to show man-
agement and domain experts how specific test requirements are
covered by a concise set of test cases, or how specific paths
through the model are formed by the generator. They can also
be used as a smaller set of offline test cases to support a larger
online test generation and execution process.

The results shown in Table 5 for the single target optimizer
also highlight an important finding. If one assumes a coverage
requirement that would need about 40 steps to reach it, using a
test length of 50 sounds reasonable. However, Table 5 shows
how coverage requirements can often be more easily found by
generating much longer test cases and then having the tool
minimize them. As noted, the probability calculation presented
in section IV- C can be a useful tool to set these parameters.

One advantage of online testing compared to its offline
counterpart is the ability of the former to adapt to responses
and state changes of the SUT on the fly [1], e.g., when testing a
non-deterministic system. While the algorithms we have pre-
sented mostly assume a deterministic test response, the online
version can also adapt to non-determinism, with the explora-
tion becoming the estimation of future paths, and each estimate
is re-calculated for each new step.

As shown in Figure 6, the optimizations help achieve a
more diverse coverage according to the defined score weights
when compared to the random choice. We also found it useful,
in practice, to add random variation to the generated test cases,
to avoid expert bias, i.e., cases not considered by the human
expert but exercised in practice. We find that the generation
and optimization approaches based on our diverse coverage
score (greedy and online look-ahead) work well to achieve
such goals. Practically, they focus on achieving the given mod-
el coverage criteria and interleave these with elements of ran-
domness in different parts. That is, the result may not be fully
optimized to produce the smallest possible test sets, but gener-
ally, we prefer this over too aggressive optimization. This pro-
vides a good tradeoff between generating huge random test sets
and only generating manually defined specific test sets, which
do not make use of the large scale capacity of test generators
and are subject to expert bias in what is tested.

VI. RELATED WORK

Test optimization in MBT has been a popular research topic
with various tools and approaches being implemented. Tools
such as Conformiq [3], Uppaal [4], and Spec Explorer [5] use
customized modelling languages, and static analysis-based
approach with symbolic execution and constraint solving to
optimize test sets. Mostly these approaches target offline test
generation, while some work [6, 4] has also made use of two-
phased test generation where static analysis is first performed
and the resulting information is used to aid in online test gener-
ation. In contrast, our approaches are targeted to cases where
such static analysis is not available due to the complexity of the
modeling language and environment.

Various approaches using general-purpose programming
languages for modelling have also been presented. Model pro-

grams similar to ours are used in MBT tools such as Spec Ex-
plorer [5], PyModel, NModel [10], and ModelJUnit [1]. All of
these tools use variations of random search for test selection.
Spec Explorer, PyModel and NModel support guiding test
selection through user defined scenarios which slice the model
to focus test generation around the specific parts of the model.
Similar scenarios are also supported in our generator, and these
can be used together with the optimization approaches we
presented to focus testing on specific model parts.

A black-box optimization approach for test generation from
models expressed using general purpose modelling languages
is also available with ModelJUnit [13]. It supports executing
the test model in a simulation mode as a pre-analysis phase
before starting the actual test generation. Possible sequences of
steps observed in these runs are collected and used to guide the
actual online test generation in the following phase. However,
this approach does not consider the state of the model, which
defines what paths are available, and thus the set of paths as-
sumed by the optimization analysis are different from the actu-
al ones available during generation. The difference to our ap-
proaches is that we do not use a separate pre-analysis phase and
produce accurate results where the exact paths and impacts on
coverage are known.

TEMA [15] is a MBT tool applied in the smartphone do-
main. It is also support online testing for Android devices,
based on a form of random selection. The tool is mainly used
to test applications through their UIs, similarly to the way we
tested the iTrust web application through its UI in Section IV-
 A. TEMA targets a similar test domain in GUI-based testing
but does not provide optimization approaches such as ours.

The techniques presented in this paper can also be viewed
as a multi-objective test optimization problem. We aim to cov-
er the items defined for the scoring function in Section II,
which can be seen as a fitness function in the terms of search-
based testing (see e.g., [16]). The algorithms we apply for
coverage score optimization can be seen as a dynamic multi-
object optimization algorithm for the test suite. Various ap-
proaches in search-based optimization have been applied be-
fore [16] but none in our knowledge to model-based test gener-
ation with black-box constrains. In fact, we are not aware of
previous work in MBT for optimizing a set of coverage criteria
as diverse as the one we optimize in this paper.

A multi-objective approach to test suite optimization for
product lines is presented in [17], targeting objectives such as
cost of test case, cost of test requirement and product variants.
Test coverage is considered as single coverage requirements on
the test model as opposed to our extensive model variation
coverage support. An interesting aspect to integrate with our
work could be the association of cost to certain test targets as
part of the coverage score function.

In software testing and verification, various combinations
of static analysis and (random) test data generation have been
used. For example, directed automated random testing (DART)
[18] combines static analysis and observations about the run-
ning system with random inputs to guide it towards new paths.
Java PathFinder (JPF) [19] enables generating test paths based
on a combination of symbolic and concrete executions. While
these are different testing approaches than MBT, combining

the information from these types of different sources with test
generation (similar to [6]) and the approaches presented in this
paper could be an interesting future research topic. While it
may be prohibitive in terms of wait time to perform such ex-
tensive pre-analysis, a possible approach could be to perform
this as a background process during modelling similar to what
is described for executing unit tests in [20].

In general, a lot of work in automated test generation tar-
gets the traditional code coverage as a test target. When addi-
tional test coverage targets are considered, these are typically
specific coverage requirements such as labels on the test mod-
els [21]. In addition to the optimization algorithms we present-
ed in this paper, the coverage scoring method itself extends
these with wider generic model coverage criteria (the model
structure elements), supported by domain-specific criteria (user
defined state and variables).

Random testing has been shown to work well in various
situations [22, 23], and some criticism has been voiced on the
effectiveness of guided random testing approaches when the
same coverage can be achieved by simply executing a large set
of random test cases in the same time [23]. We share this view
in noting that executing a very large set of random tests should
yield the same or even higher coverage over time as our opti-
mization approaches do. The aim of our approaches is to prac-
tically choose a reasonable subset of such a larger set under
different use cases.

VII. CONCLUSIONS

In this paper, we presented three different approaches to
test optimization in black-box model-based testing. We then
evaluated their performance and provided comparisons on the
strengths and weaknesses of each. Our evaluation highlights
the benefits of these different approaches over the traditional
random choice and their usefulness in different contexts. The
online version works well to provide added coverage when
prototyping slow to execute test cases. The greedy offline op-
timizer gives a test suite for higher overall model coverage.
The requirements targeting optimizer can help provide specific
test cases where useful. Combining potential benefits of these
approaches with static analysis where possible would be an
interesting future research topic. Domain-specific applications
of these approaches, including customizations of algorithms
and modelling languages are also interesting future topics.

VIII. REFERENCES

[1] M. Utting and B. Legeard, Practical Model-Based Testing: A

Tools Approach, Morgan Kaufman, 2006.

[2] W. Grieskamp, N. Kicillof, K. Stobie and V. Braberman,

"Model-Based Quality Assurance of Protocol Documentation:

Tools and Methodology," Journal of Software Testing,

Verification and Reliability, vol. 21, no. 1, pp. 55-71, 2011.

[3] A. Huima, "Implementing Conformiq Qtronic," in Testing of

Software and Communicating Systems, 2007.

[4] M. Mikucionis, K. Larsen and B. Nielsen, "T-Uppaal: Online

Model-Based Testing of Real-Time Systems," in 19th Int'l.

Conf. on Automated Software Engineering (ASE 2004), 2004.

[5] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N.

Tillmann and L. Nachmanson, "Model-Based Testing of Object-

Oriented Reactive Systems with Spec Explorer," Formal

Methods of Testing, pp. 39-76, 2008.

[6] D. Ahman and M. Kääramees, "Constrain-Based Heuristic On-

line Test Generation from Non-Deterministic I/O EFSMs," in

7th Workshop on Model-Based Testing, 2012.

[7] A. Groce, A. Fern, J. Pinto, T. Bauer, A. Alipour, M. Erwig and

C. Lopez, "Lightweight Automated Testing with Adaptation-

Based Programming," in IEEE Int'l. Symposium on Software

Reliability Engineering, 2012.

[8] T. Kanstrén, "OSMO Tester Home Page," 2014. [Online].

Available: http://code.google.com/p/osmo. [Accessed April

2014].

[9] M. Veanes, C. Campbell, W. Schulte and N. Tillmann, "Online

Testing with Model Programs," in ESEC/FSE-13, 2005.

[10] J. Ernits, R. Roo, J. Jacky and M. Veanes, "Model-Based

Testing of Web Applications using NModel," in Testing of

Software and Communication Systems, 2009.

[11] M. Utting, A. Pretschner and B. Legeard, "A Taxonomy of

Model-Based Testing Approaches," Software Testing,

Verification and Reliability, vol. 22, no. 5, pp. 297-312, 2012.

[12] T. Kanstren and T. Kekkonen, "Distributed Online Test

Generation for Model-Based Testing," in Asia Pacific Software

Engineering Conference, 2013.

[13] M. Utting, "The ModelJUnit Model-Based Testing Tool," 2009.

[Online]. [Accessed 17 May 2013].

[14] North Carolina State University, "iTrust: Role-Based

Healthcare," 2013. [Online]. [Accessed 17 May 2013].

[15] T. Takala, M. Katara and J. Harty, "Experiences of System-

Level Model-Based Testing of an Android Application," in

IEEE Int'l. Conf. on Software Testing, Verification, and

Validation (ICST2011), 2011.

[16] P. McMinn, "Search-based testing: Past, present and future," in

3rd Int'l. Workshop on Search-Based Software Testing, 2011.

[17] H. Baller, S. Lity, M. Lochau and I. Schaefer, "Multi-Objective

Test Suite Optimization for Incremental Product Family

Testing," in IEEE Internation Conference on Software Testing,

Verification and Validation (ICST2014), 2014.

[18] P. Godefroid, N. Klarlund and K. Sen, "DART: Directed

Automated Random Testing," in Programming Language

Design and Implementation (PLDI 2005), 2005.

[19] C. S. Pasareanu and N. Rungta, "Symbolic Pathfinder: Symbolic

Execution of Java Bytecode," in Automated Software

Engineering (ASE 2010), 2010.

[20] D. Saff and M. Ernst, "Reducing Wasted Development Time via

Continous Testing," in Proc. Int'l. Conf. on Software Testing

and Analysis (ISSTA), 2003.

[21] S. Bardin, N. Kosmatov and F. Cheynier, "Efficient Leveraging

of Symbolic Execution to Advanced Coverage Criteria," in

IEEE Int'l. Conf. on Software Testing, Verification and

Validation, 2014.

[22] I. Ciupa, A. Pretschner, M. Oriol, A. Leitner and B. Meyer, "On

the Number and Nature of Faults Found by Random Testing,"

Software Testing, Verification and Reliability, vol. 21, no. 1, pp.

3-28, 2009.

[23] A. Arcuri, M. Z. Iqbal and L. Briand, "Random Testing:

Theoretical Results and Practical Implications," IEEE

Transactions on Softw. Eng., vol. 38, no. 2, pp. 258-277, 2012.

