Machine Learning in Network Analysis and
Software Testing

Teemu Kanstrén
VTT
Oulu, Finland
firstname.lastname @ vtt.fi

Abstract—This is a review of some recent works in applying
machine learning in network analysis and software testing.
Originally done to support work in building more advanced use
cases for domain experts and partners to give some ideas on how
ML might be applied in different contexts. Not to copy from,
but the given an idea of the potential, properties of application
domains, data, and other related aspects when looking at what
benefits ML could bring.

Index Terms—network, software, testing, qos, qoe, machine
learning

I. INTRODUCTION

This is a brief review of paper on applications of machine
learning (ML) in network analysis and software testing. Net-
work analysis is reviewed to provide a basis for applications
in test scenarios in test environments such as the Finnish
5G test network (5GTN). Software testing is reviewed to
provide a second domain with example applications, to give
a broader idea of application of ML across different domains.
The connection between testing networked systems, network
elements, and software is also quite close, and as such the
review can support people working in both areas to find
synergies. For example, many use cases run on top of a
test network such as SGTN are also likely to require similar
tuning of the algorithms and approaches to their domain as in
software testing.

The reviewed works are described in terms of their appli-
cation domains, analysis goals, applied techniques, and the
feature sets (ML training data) applied.

The rest of the paper is structured as following. Section II
gives a brief overview of machine learning concepts discussed
in this paper. Section III reviews applications of ML in
network analysis and testing. Section IV reviews applications
of ML in software testing. Sections V and VI discuss these
applications overall, and conclude the paper respectively.

II. BACKGROUND CONCEPTS

Machine learning is defined here as the ability of a computer
system to automatically learn (complex) patterns from data.
In networking, this data can be, for example, data packets,
quality of service (QoS) statistics (e.g., throughput, jitter,
delay), or flow related metrics (such as connection times). In
telecommunication systems this can further include domain
specific extensions such as call detail records (CDR) or control
signaling (call setups, handovers, etc.). In networked systems,

service specific data can be included, such as node resource
use, transaction times, and application specific metrics (e.g.,
video streams, user types and counts, messages sent).

For example, in a test network such as 5GTN, we can
measure detailed and accurate QoS measurements between
different end points, or for specific users, using specific tools.
In operational networks such specific measurement deploy-
ments are not possible. A potential application of ML could
be to evaluate the possibility to estimate such QoS values from
generally available network parameters (e.g., base stations and
core network), enabling such estimates in operational networks
and using those as input for network management.

A related term is artificial intelligence (AI), which here is
defined as using the ML results and other available information
as a basis for applications and actions. In other cases, the
ML results can be used for understanding the system, such
as which features in the data best describe the differences
observed in the network/system during different test scenarios.
In this paper these applications of the ML algorithms are
briefly discussed with their description.

There are many different machine learning techniques, and
in this paper we will not go in depth into their definitions.
The techniques applied in the works discussed in this paper
are mentioned as reference for the interested reader. These
include traditional machine learning methods such as Linear
Regression (LNR), Logistic Regression (LGR), Naive Bayes
(NB), Decision Trees (DT), Random Forests (RF), and Support
Vector Machines (SVM), as well as neural networks (NN)
and their deep learning (DL) variants. Besides these, many
variants of ML algorithms exist. For example, [2] studies
179 classifiers from 17 different classifier families, and find,
out of all these, specific variants of RF, SVM, DT, and NN
consistently perform best across their datasets. Thus, this list
is at least a good starting point.

Beyond classifiers, other ML techniques also exist. Natural
language processing (NLP) is a set of techniques that can
be used to process a set of natural language documents as
input for ML algorithms. The NLP techniques cited in this
paper are term frequency with inverse document frequency
(TF-IDF) and latent dirichlet allocation (LDA). TF-IDF aims
to highlight words that are especially relevant for specific
documents. Term frequency (TF) in a document is used to
highlight terms most relevant for one document, and inverse
document frequency (IDF) is used to down-weight those terms



that appear in many documents. The end result is intended
to highlight terms (words) that are important (common) in a
document, but are not generally common in all documents.

LDA uses a statistical process to group words in documents
into specific topics. A “topic” is a set of words, and each
word in each document is assigned to a topic. Typically there
are multiple topics in each document, and each unique word
can be assigned to different topics in different sentences.
The topics do not necessarily have a meaningful human
interpretation (although often one can be assigned by human),
but can still be useful to perform automated actions such as
finding documents covering similar topics.

In addition to the different ML algorithms mentioned,
another concept mentioned in some of the reviewed works in
ensemble learning. This uses several variants of ML algorithms
trained to solve the same problem. The predictions from these
different variants are then combined using techniques such as
averaging or feeding the results of each separate algorithm as
features to another ML classifier. The goal is to have a more
accurate classification than provided by any single algorithm
alone.

III. NETWORK ANALYSIS AND TESTING

Running test scenarios in test networks such as 5GTN
requires building the required network architectures and con-
figurations, running the test scenarios, collecting data about the
overall networks and services that are part of the test scenarios,
and analyzing the data. The goal of these data analytics is
to understand the test scenarios, what is happening, what
are the impacts on different elements, how do the different
configurations effect the operations. What is analyzed, and
how this is done, depends on the goal of the test scenario.
In a test network, those scenarios are often related to different
aspects of networks, which can also include aspects of applica-
tions and services running on top of the networks especially
from different non-functional viewpoints, such as reliability,
performance, and security. This section reviews applications
of ML to networking related data analytics to support such
test scenario analytics.

A. Examples of Use Cases

Example cases of big data, and its use, in telecommuni-
cations are presented in [3]. The datasets are classified under
signaling data, traffic data, location data, radio waveform data,
and heterogeneous data. Examples of signalling data analysis
include identifying coverage holes by analyzing handovers.
Examples of traffic data analysis include analyzing traffic
volumes over times of the day to provide input for network
management, failure detection, performance analysis, and se-
curity management. An example of location data is given in
using CDR data to movements of groups of people during large
events (sports fans, emergency situations, etc.). An example
of analyzing radio waveform data is given in using it to
estimate user movement speed. Heterogeneous data use refers
to combining these datasets together and with other existing

datasets, and finding overall patterns for goals such as anomaly
detection for cyber security analysis.

Big data use cases for mobile operators are considered also
in [5]. Many of these use cases go beyond what is related to
communication networks themselves, such as providing route
maps and plans, vehicle and person tracking, analysis of billing
data, and optimizing service pricing based on sentiments.

The more network focused use cases in [5] include real-time
failure root cause analysis, self-organizing network automa-
tion such as provisioning, configuration, and commissioning,
input to intelligent marketing campaigns, fraud detection, and
informing customer support about caller issues in real-time.
Input data (features) in these cases include CDR records,
more extensive data records (xDR), traffic data, network event
data, location data, subscriber data, customer care data, and
historical data.

B. QoS and QoE Prediction

A genetic programming (GP) based approach for time series
prediction of QoS values is presented in [9]. Input data features
used can be any selected QoS metrics (in this case they seem
to use server response time), and a genetic programming is
used to generate a function to predict near-future values for
the same QoS metric. The N previous values of the chosen
QoS metric(s) are used as the input for this prediction and
for learning the function. In [9], N is basically 15, although
can be smaller depending on what function the algorithm ends
up with. The resulting function is then used to predict QoS
values from previous measurements, and evaluated against past
measurements during training (when generating the prediction
function).

The generated function consists of a combination of mul-
tiple basic functions, such as: +, -, *, /, mod(), min(), max(),
pow(), sin(), cos(), tan(), abs(), floor(), ceil(), round(), log(),
and exponent(). Features in the formula are time series current
value (Yt) and previous values from previous step (Yt-1) up to
15 steps in the past (Yt-15). These functions and features are
combined using various genetic programming operators such
as crossover and mutation. Their comparison against methods
such as LNR and NN shows GP can provide good results in
some cases as well.

Machine learning to identify network interference is de-
scribed in [28]. Channel Quality Indicator (CQI) values for
connected UE’s is collected throughout the network. As CQI
is based on a 3GPP standard, all UE’s are expected to
implement it similarly under similar conditions, making it a
useful overall measure to monitor and analyze. By comparing
the UE CQI values against their neighbouring cells, the aim
is to optimize spectral efficiency and minimize interference.
As a basic approach, correlations between neighbouring cells
having high throughput values, at the same time as a cell has
low CQI values reported for it, are used as a basis to identify
optimization opportunities. A cell is considered to interfere
with another if a high throughput for that cell correlates with
a low CQI for the other cell.



Beyond this, when applying ML, a single end-user quality
metric (CQI here) is taken as the target variable to predict.
Similarly, a measure for interference of neighbouring cells is
selected, such as physical resource block (PRB) utilization
rate, or data volume. The input features for ML are these
selected interference values for N neighbouring cells, and the
target variable is the chosen quality metric (e.g., average CQI).
An ensemble of several simple learners is used to produce
the final estimate of predictor for the target variable, with the
use of multiple learners targeting to better identify relations
between multiple interacting cells. The resulting prediction
value(s) from ML are used to give importance scores of
how much interference each neighbouring cell is giving to
a problematic cell.

Optimizations applied as a result of identifying interfering
cells include antenna tilt changes and modifications to refer-
ence signal transmission power (boosting or de-boosting). As
a benefit, this is also seen as a means to replace expensive and
non-real time drive testing of networks, with more automated,
constant and close to real-time views and optimizations of
operational networks. The results in [28] indicate the result-
ing optimizations to increase throughput while data volume
remains the same. Radio signal de-boosting was found to be a
more efficient optimization technique in the cases investigated
in [28]. They measure success using metrics such as radio
resource control (RRC) and enhanced radio access bearer
(ERAB) setup success and drop rates.

End user application QoE performance prediction is inves-
tigated in [1]. To get labeled training data for training ML
classifiers, a set of users is surveyed performing given tasks.
For example, tasks can be to watch a 2 minute high-definition
(HD) video clip on YouTube, view Facebook streams, or
browse cities in Google Maps. Each surveyed user had an
app installed on their mobile device that they used after each
task to report their subjective QoE experience on levels from
1 (bad) to 5 (excellent). These user reported values are then
used as the ML training targets.

In addition to the manual reporting tool, an automated
network traffic monitoring tool was applied, associating net-
work flows to specific applications. The flow information
includes start time, duration, direction (up/downstream), and
throughput metrics (up/downstream). Additionally, connection
metrics such as signal strength, operator id, cell id, radio
access technology (LTE/3G/2G/...) were collected and used.
The automated collection is done locally and periodically
transferred to backend servers for post-processing. A session
is defined as a set of joined (in time) flows for a specific
application for a user. The user provided QoE evaluation is
associated to these sessions, along with a set of KPI values
calculated from the set of automatically collected network met-
rics. These KPI's simply summarize the session metrics into
single values, typically statistics such as average, minimum
and maximum (e.g., average throughput in session).

Machine learning classifiers are trained on these values,
with the user given QoE estimates as target labels, and the
metric KPI’s as input values. The base algorithm used in

decision trees, to allow easy interpretation of results with
reasonably robust classifier. Additionally, RF, SVM, and NB
are evaluated, showing DT scoring equally well to other
classifiers on this dataset.

To select subsets of features, [1] uses correlation-based
feature selection. Selected variables have highest correlation
with the target variable, and lowest with each other. Finally,
each feature is ranked by the decision tree weights, according
to the positive/negative effect it has on the QoE for a specific
app. A separate model is built for each app, where different
metrics are found to be more important for different apps. A
deeper investigation into specific metrics per app is also shown
to provide further insights. For example, longer YouTube
sessions were reported to have generally lower QoE, which
was found to be due to stalling video causing delays.

Root causes for network performance variability are in-
vestigated in [7]. A mobile application on an Android de-
vice constantly monitors and records both passive and active
measurements. Passive measures include local signal strength,
network provider, used wireless access technology, and users
current location. Active measurements include round-trip time
(RTT), trace-route and throughput. RTT from the UE to the
measurement servers is measured periodically, and a through-
put measurement is executed when the user activates it. Data
is locally collected and later transmitted to backend services
for deeper analysis.

RTT is measured using the Android ping command, and
throughput with the iPerf application. A server in the authors
host site is used for ping backend target. Additional HTTP
”ping” is measured as time-to-first-byte when performing a
HTTP request for a subset of the top sites listed on Alexa
website ranking list.

A number of different measurement campaigns are executed
to collect a diverse dataset. A measurement tool is made
available in the Google Play store for Android, and the data
collected and provided by the users of this tool forms one
subset. A group of five students is recruited as one subset
to perform specific measurements during their daily activity.
Finally, a stationary set of measurements was collected using
a set of devices deployed in a specific location and kept
there for the whole duration of the measurement campaign.
This was aimed to minimize the change of parameters during
measurement. The stationary dataset was also used as a
reference to capture time-based variation not caused by other
parameters. There were 3 stationary locations, each selected
to give different profiles. Two in different residential areas,
and on in an office building next to a central park. Time of
experiment and measurement was 4 weeks.

Analysis of collected data includes isolating mobile network
operator effect from the data by looking at the trace-route
data, identifying users potentially assigned point of presence
(PoP) in the network. Markov-chains and decision-tree based
machine learning are used to predict PoP assignments, and PoP
assignments are shown to contribute a high amount to user
perceived QoS values. The Markov-chain is used to predict
transitions between PoP states, and is hypothesized to provide



a basis to predict the assigned PoP when a device attaches to
the network. The decision tree is used to predict a users PoP
state at given time. Features used to train the DT here include
the day of the week, the hour of day, and the user ID value.
For example, HTTP host” field, SSL client and server "hello”
packets, UDP ports, and TCP flow sizes are used.

The DT evaluation here gives over 97% accuracy, but this is
not explored in more depth in the paper. This seems high for
simply time-based prediction, highlighting interesting results,
while it seems a deeper investigation would be needed to more
broadly adopt any results. For example, it may be that the
observed people have very specific routines, leading to good
prediction accuracy due to predictable movements during days.
The paper concludes with analysis that PoP assignments, in
this case, indicate random PoP assignment by the operator,
showing large potential improvements.

C. Application Identification

Application flow identification is studied in [10]. Test au-
tomation tools such as GUITAR and Appium are used to
drive application use scenarios on mobile devices. A deep
packet inspection (DPI) tool is used to capture the network
traffic during this time. The flows are first classified as HTTP,
SSL, TCP or UDP flows. Based on this classification, specific
protocol fields are extracted as features for the ML algorithms.
To clean the dataset of unrelated flows (such as advertisement
and tracking flows on websites), exclusion lists are used.
These exclusion lists are built by monitoring all the captured
sessions for shared flows, indicating generic flows to ignore
(e.g., adversing or tracking).

Different fields such as HTTP and SSL header fields are
collected as monitoring data. Patterns of shared byte-sequences
are considered if no suitable fields are found (e.g., in lower-
level raw TCP and UDP dumps). Statistical properties of
the flows are also collected, such as sizes, average, standard
deviations. These statistical properties are further clustered to
provide more refined features. These features of application-
internal flows are used to classify application specific flows
further. An example of three different flows for the WhatsApp
application is used. By clustering the application flows based
on the WhatsApp collected data packet statistics, K-means
clustering is used to identify control-flow and data-flow spe-
cific flows. A third category is also used as irrelevant flows”,
which are a small subset of anomalies not fitting in the control-
or data-flow categories.

The “machine learning” part in [10] is learning to separate
different flows this way, and to identify the patterns related
to different applications. These for the set of rules used to
classify flows into specific applications.

Application identification from network data is also studied
in [4]. Examples of potential application areas for this are
given as malware detection, content caching, application spe-
cific QoS optimization, and traffic control. The approach in [4]
uses two types of features for training. Statistical features are
collected as “non-payload” metadata from network packets.
This includes features such as source and destination IP

addresses and ports, statistics (averages, standard deviations)
of packet lengths and arrival times, SYN packet window sizes,
and ratios between source and destination traffic sizes.

The second set of features are captured using DPI methods.
These features are formed by analyzing 2-grams of bytes in
packet data, where unique 2-grams form features (2-gram here
refers to a sequence of two bytes). To limit the size of the
feature set, the set of top 100 2-grams (top 100 most useful)
are selected as these features. This top set refers to the 100 best
features for use in the chosen ML algorithm. Unfortunately,
[4] does not describe how they select the top 100 features,
but rather refers to future work for more extensive study on
feature reduction. The DPI packet capture is focused on start of
the data-flow, as 5-20 first packets in each flow. This choice is
based on most likely containing header data in the first packets,
which will likely vary much less that the actual payload data
itself across users (for same application).

The training dataset in [4] is collected from a set of modified
(rooted) Android devices. These have been modified to add an
application identifier to each SYN packet starting a flow. This
provides a set of labeled training data for the machine learning
classifier. The classifier used is a random forest. A learning
period of 5 days is found to give 92% accuracy with DPI
enabled. In their previous studies, the same authors achieved
80% accuracy without DPI.

Again, application identification from network flows is
presented in [12]. They identify network flows based on a
combination of source IP, destination IP, source port, and the
protocol identifier. The ML input features used are packet
and connection statistics, such as maximum and minimum
packets lengths in connections and flows. The target prediction
label is the recorded application during specific flows. A large
feature set of such potential statistics is referred to but not
described in detail. As labeled training data, they use both an
existing application dataset from the internet, and an additional
dataset generated by themselves by having users use specific
applications while all traffic is recorded.

As the overall set of possible features listed in [12] is
described as large, feature selection algorithms (from the Weka
machine learning library) are used to trim it to smaller. These
algorithms are correlation-based and chi-squared based selec-
tion. The machine learning algorithms applied are decision
trees, random forest, k-nearest neighbours, and bayesian nets.
For the two datasets used for the study, k-NN is found to
perform better for one and RF for the other, with RF being
more consistent across both datasets although K-NN also
doing well on both.

A more general approach to traffic classification is presented
in [11]. Instead of looking purely at application specific flow
optimization, they look to identify groups (or categories) of
applications, and to optimize flows in those groups. However,
this is still based on first identifying a set of applications and
putting these to a set of four categories: voice/video confer-
encing, interactive data, streaming, and bulk data transfer.

The approach presented in [11] first identifies a set of
“elephant flows”, which are simply flows that are taking 1-10%



of the total bandwidth at a network edge. Using DPI, the first
20 packets of these flows are collected for analysis. The set of
features used for ML include packet length entropy, destination
and source ports, average and median packet lengths, and
packet counts and interactivity degree from each flow. An
SVM classifier is trained based on the identified properties
(features) of the specified flows.

The architecture applied in [11] is especially tailored for
SDN environments. The trained algorithm is deployed on an
SDN controller node to manage network traffic and categorize
the “elephant flows”. Categorization is based on identifying
specific types of flows based on their shared statistical prop-
erties. The features are not described fully in [11], rather a
subset of final selected features from the full set is shown,
and only a name is given not a full description. Openflow
data capture functionality is used throughout the network to
capture flow data and DPI metrics. The overhead of this is
distributed throughout the SDN elements the different flows
traverse through.

D. Anomaly Detection

Call detail record (CDR) analysis using clustering to find
anomalies is explored in [8]. Input features for the clustering
are taken directly from the CDR values as the (caller region)
square id, timestamp, inbound call duration, outbound call
duration, inbound SMS count, and outbound SMS count.
Both K-mean and hierarchical clustering are applied to collect
a set of clusters from the data. The clusters with a small
number of data points are classified as anomalous. These are
then provided for further investigation. In [8] the examples
of findings are identifying special events such as football
matches, and special locations such as hospitals.

Another application area suggested in [8] is to cleanse
data of anomalies, or the separate the data into anomalous
and “normal” data, and use the resulting dataset as a labeled
training set for a supervised classifier. This could then be
applied to find more generally new types of anomalies, or to
identify specific types of anomalies in operational networks,
and to use those for specific actions such as real-time network
management algorithms.

Generally potential application domains for big data analy-
sis for networks given in [8] are providing visibility into the
network, automated self-coordination of network functions and
entities, assessing long-term network dynamics, optimizing for
faster and more proactive networks, optimizing for smarter and
more proactive network caching, optimizing energy efficiency,
and unified performance evaluation of networks.

IV. SOFTWARE TESTING

Software testing aims to verify functional (e.g., confor-
mance to specification) and non-functional (e.g., performance)
properties of software. In relation to network testing, similar
functionality may be applied from the viewpoint of networked
systems. More generally, looking at ML applications for
software testing also gives a second application domain to
see some examples of broader application of ML to different

problems. This section reviews applications of ML to software
testing related data analytics to support different aspects of
testing processes.

A. Defect Prediction

One of the main applications of machine learning in soft-
ware testing is for defect prediction. This is likely due to the
obvious applicability of ML to defect prediction. Generally,
defect information (bug reports) are collected for almost every
system. This provides a natural set of labeled data to use as
input for training a ML classifier. An overall review of ML
applications to defect prediction is given in [13], showing a
clear rise of interest over past years.

The set of most applied ML algorithms as listed in [13] for
defect prediction is similar to those presented in Section II;
DT, RF, NB, SVM, and NN. As input data for ML, the studies
referenced in [13] focus on use of source-code related metrics.
These metrics are the potential input features for the ML
algorithm training for defect prediction, while the target labels
are the parts and versions of the code where faults have been
found. Different studies find different sets of these metrics
useful for different projects. To select between these metrics,
[13] lists several used feature selection methods, and cites the
most commonly used feature selection method as co-relation
based feature selection (CFS). This is described as eliminating
”noisy and redundant” features, and retaining the features that
are highly correlated with the target attribute. Finally, the
trained classifiers are used to predict the most likely parts
of the code to contain faults, which are provided as input for
quality assurance to potentially focus more testing on.

An example of applying neural networks for fault-proneness
prediction is from [14]. To determine the NN parameters
(layers, unit count, learning rate), a coarse sampling of the NN
parameter values is performed, and each variant is evaluated
on the training set. That is, a set of parameter configurations
for the NN are tried with a small set of different parameters,
and the set that performs best on the training set is selected
as the parameters for the classifier.

For feature selection, [14] uses sensitivity analysis. Values
of each feature are perturbed (modified) by a given amount,
and the accuracy of the model is evaluated. If modifying a
feature causes large changes in the model accuracy, the feature
is considered important and retained. Features used in [14]
include various source code metrics, such as lines of code,
number of branches, and cyclomatic complexity.

To estimate overfitting, [14] uses mean squared error estima-
tion of both the training and validation sets. While the training
set error keeps reducing over all iterations, the validation set
error starts to increase at some point. This is used as a stopping
criterion to stop overfitting for the training set. At the same
time, the graphs in [14] show how the overfitting starts to
mainly occur after the biggest gains over iteration counts in
the training set have been achieved (i.e., the following gain in
accuracy is much smaller).

As a final evaluation, [14] compares the effectiveness of NN
vs SVM on predicting the fault-proneness. The NN approach



is found to give an accuracy of about 73%, and SVM about
87%. This shows the need to finely tune NN based approaches,
and the usefulness of “traditional” approaches such as SVM
in many cases.

Another approach to predicting fault-proneness of software
with NN is presented in [23]. This one uses convolutional
neural networks (CNN), along with traditional source code
metrics, to build the predictor. To turn the source code into
suitable input features for the CNN, the tokens in the source
code are analyzed to produce the initial set for input. The se-
lected set of source code tokens includes method declarations
and invocations, and control flow node types (e.g., if/while
statements). These lists are turned into integers, which are
fed to a word-embedding layer to produce vectors of word
embeddings as input features for the CNN.

The overall NN for defect prediction uses the CNN layers
as an initial set of layers to produce abstracted feature vectors
from the textual source code. These are merged with the
traditional source code features (metrics, similar to previously
discussed source code features) for the final assessment using
a dense layer as single valued output (probability of fault).
In the input data, a source code element (file) is considered
as buggy if there has been a bug reported against it. The
training set is described as unbalanced in containing more
“clean” than buggy files. Sampling from the clean set is used
to achieve class balance. As CNN also requires fixed length
feature vectors, and the source code files differ in size, the
feature vectors for different files are given equal length by
appending zeros as needed. The resulting classifiers are applied
to several projects, with a result of about 60% accuracy. A
comparison against using the source code metrics for LN and
NN is also made, showing the ML algorithm version with
CNN to do better in the cases presented.

Use of ensemble learners for defect prediction is investi-
gated in [26]. Several different configurations of classifiers
such as Naive Bayes, Decision Trees, and K-nearest Neigh-
bours are used to form the ensemble, and a final classifier
is used to combine the predictions of all these for the final
prediction. Features for the algorithms again include the source
code metrics.

To build a more optimal set of classifiers for the ensemble,
the diversity of classifiers is measured, and the set of selected
classifiers aims to maximize this diversity. The diversity in
this case is measured as the fraction of cases where one of
two classifiers makes the correct prediction while the other
one does not (in relation to sum of all predictions). The
evaluation in [26] compares diversity based ensembles against
the best performing single classifiers, showing the ensembles
to produce improvements in the evaluation metrics. However,
in most cases they show increased number of true positives
(defects predicted correctly), but also increased number of
false positives (defects predicted where none exist). In this
case, the authors argue it is better to find more places that
correctly need more testing focus (faults found in the study),
even while providing some places where it can be useful
but not critical (e.g., no fault was found in the study). That

is, ensembles seem useful but needing tuning and domain
consideration with regards to all evaluation metrics.

B. Automated Debugging

To ease debugging of a set of failed test cases, [18] clusters
similar failed test cases together. NLP based techniques are
used to analyze and cluster the test cases by treating each test
execution as a document. The words and sentences in these
”documents” are formed by recording the executions of the
test cases, and collecting the source code lines executed by
each test case. These source code lines are the split using
camel-case splitting to form the words. Clustering is based
on semantic similarity of executed test cases. The semantic
similarity is defined using cosine similarity measures based
on TF-IDF scores of the test cases. The intent is to make
debugging easier by grouping similar failing tests together,
to enable the expert to analyze these together for potentially
shared faults.

In a similar approach for bug localization (finding the
cause/location of failure in code) using textual features, Latent
Dirichlet Allocation (LDA) is used in [15]. Source code and
bug reports are used as input data for the ML algorithms.
The source code is split into sections, which are considered
documents for the topics modelling algorithms, based on some
criteria, such as package level or method level splitting. Source
code is preprocessed for the LDA model as well as the
document topic assignments by stemming, stop word removal,
and camel-case splitting. The features used in [15] are thus the
words parsed and processed from the source code. For LDA
analysis, each source code method is considered a document.

A topic model is generated based on this generated doc-
ument set, source code tokens/words are assigned to these
topics, and each bug report is evaluated with regards to which
documents would be most likely to generate this bug report.
These parts of the source code are then ranked highest in
the resulting report for debugging the bug reports. The results
across several projects are evaluated, and for the available
set of bug reports with matching fixes available, the relevant
method where the bug is located, is in most cases returned in
less than 1% of all methods. However, in practice this can be
thousands of methods still for very large projects.

C. Testing ML Algorithms

Testing the implementations of a machine learning algo-
rithms is described in [27]. A basic approach is to compare
results from two different libraries implementing the same
algorithm for the same dataset. A more detailed approach is
described as based on metamorphic testing. A set of relations
(called metamorphic relations according to metamorphic test-
ing) are defined that should hold for different classifiers. Input
and output data can be modified based on these metamorphic
relations and associated functions. Metamorphic relations for
specific algorithms can be excluded if not considered relevant
for that algorithm. A list of generic relations is provide in [27],
such as adding or removing training data elements. However,
it remains unclear how well this approach could work due



to possible issues such as resulting in overfitting the data for
duplicated elements, or other similar issues.

More recently, verification and validation of a machine
learning framework application for image analysis is studied
in [19]. The application focuses on classifying biological
cells in medical images. A technique called correlation-based
feature selection [20] is used for feature selection for the
ML algorithm itself. This technique evaluates which features
most correlate with the target variable, and least with each
other. These features are then taken as the subset for the
chosen machine-learning algorithm. To actually test the ma-
chine learning algorithms, an image based classifier is first
trained using a training set as usual. A set of modifiers for the
data is defined, and data that is classified in one way by the
classifier is modified by these different classifier. The results
of classifying the modified input data is then observed and
used to evaluate the robustness of the classifier with known
type of changes in the input data.

The description and evaluation of the approach in [19]
is somewhat limited. The authors have access to an image
generation tool that can be parameterized to generate images
with desired features. However, if the “metamorphed”, or gen-
erated images, end up producing better training for classifiers,
and how well this would generalize to actual real-world data
and images remains open. However, morphing input data to
provide additional input data for ML is also more generally
applied. For example, re-scaling, re-sizing, flipping, rotating,
or adding noise, can be used as transformations to make an
image recognition ML algorithm more accurate and robust
[29]. When such transformation can be defined (and the more
advanced they can be made), they can be potentially very
useful for training and evaluating a classifier to be more robust.

The idea of using machine learning models as partial test
oracles is briefly discussed in [17]. In [17], this is simply
described as an idea for future research, but still provides an
interesting potential application domain for ML in software
testing. It describes a concept of machine learning models
providing us with means of evaluating partial correctness of
a system. Since inferring perfectly accurate specifications of
a systems behaviour, or having those models fully accurately
describe the systems expected behaviour is seen as unlikely,
the idea in this case is to modify the expectations and assume
that these might be describing the correctness only partially.
The models would then be used as support for building more
complete descriptions of the system behaviours.

Since these techniques are described as targeting auto-
matically generated programs, they can be seen as another
way of looking at testing machine learning algorithms (or
applications build on top of them for specific purposes as
Al based systems). As such, these questions can be related
to the above approaches to testing ML algorithms and their
applications, but asking the question of how to apply them
to evaluate overall functionality vs producing training and
evaluation data. To generate and train ML algorithms to reason
about correctness in a specific domain.

D. Analyzing Test Artefacts

To help plan and schedule test execution effort, [16] uses
a NN to predict the test execution effort based on a set of
test and source code metrics. Source code metrics/features
are similar to other ML techniques discussed above. The test
metrics related features used include number of test cases and
test steps, execution counts, and similar test metrics. The target
is not to accurately estimate the effort needed, but rather to bias
the model to overestimate it, as the authors see overestimation
of effort as less of a problem than underestimation. This is
a generally useful concept to keep in mind, how the training
goal as evaluation metrics for ML algorithms may vary across
different domains.

Automated linking of software artefacts using machine
learning techniques is investigated in [21]. Recurrent neural
networks (RNN) are used to give a probability of two artefacts
being linked. The raw input to this system are the words in
each artefact, which are first pre-processed using the usual
NLP preprocessing methods (lower-case, removal of non-
standard characters, stemming, stop-word removal). Each word
is turned into its word2vec word-embedding vector to use as
input for the neural network. These words are fed as input
to the RNN, which provides as output a semantic vector for
that input sequence. By running the RNN on both the source
artefacts and the target artefacts two semantic vectors are
acquired. The direction and distance of the vectors are then
used as input to an integration layer in the neural network to
assess the probability of a link existing.

To get the input features for this task, [21] train a word2vec
model using both a generic set of words and sentences from
Wikipedia, as well as a domain specific set acquired from their
project partners. This is used to transform the input words into
their word-embedding vector representations. From these, the
domain specific model is found to be more effective than the
combination of a general model (Wikipedia) and the domain
model. A large set of predefined links between artefacts is used
as a labeled training data set for the neural network. Since the
dataset has large class imbalance (there are many more non-
linked pairs than linked pairs), this is balanced by randomly
sampling a subset of non-linked items to match training set
label sizes. The results of the probability classification are
presented to the human expert as input in the form of possible
or most likely links. The human expert can then make the final
decision, and their input can be used to produce further test
and training data.

E. Application State Modelling

Using ML to automatically identify application state of web
applications is explored in [22]. This is based on collecting
the contents of a pre-specified set of the document object
model (DOM) elements from a web-page. The DOM is a data-
structure used to describe web-pages for the browser to render
them, and thus contains information such as the page text, and
page field identifiers. The words collected from the DOM are
preprocessed using bag of words, TF-IDF, and latent semantic
indexing. A training set is constructed by manually labeling



DOM elements with tags such as ”last name”, “password”,
and so on. To label new samples, the distance of the word-
vector for each element is calculated, and the closest match
is suggested as a label. For example, to identify login pages
when crawling a web application. In practice, it seems one
would do better to just define simple rules for what is the
login page of ones application. However, for more complex
crawling approaches, and model-based test-generation, some
aspects of web-application models and mapping them together
could benefit from using such ML approaches and their labels
as one input.

F. Test Prioritization

Test case prioritization aims at reducing test cost by execut-
ing the tests that are most likely to find faults first. In [24], the
likelihood of a test to find a failure is predicted using an SVM-
based model. Features used are the number of lines of code
executed by the test in changed files, the file paths of changed
code vs tests, the textual content of change file vs tests, test
failure history, and test age. The textual elements (path and
contents) are transformed into TF-IDF vectors, and their cosine
similarity is measured. Failure history is used to weight more
recently failed tests higher, based on the likelihood of re-failure
(regression). Test age gives a higher weight to newer tests,
based on likelihood of recent changes introducing new faults.

To build a training set for the SVM classifier, every failed
test set is added to the training set with these features.
Snapshots of the tests and code where the test have failed and
passed are added to the training set. The resulting classifier
is used to give a probability of failure for test cases, and this
probability is used to rank the tests. Unsurprisingly, the best
single feature is found to be the test vs code path, as Java
code is assigned to packages, and each package has a file path
matching the package name. If the test and source code paths
match, that usually means the test is exercising that code as
well (code under package ’payments” and tests under package
“payments” are typically linked). The evaluation in [24] shows
high gains for their dataset compared to previously applied
approaches for that dataset. For example, to detect 75% of
failures in that dataset, only 3% of the test set was needed,
while the previous approaches using single metrics (e.g., code
coverage, text matching, code path matching) required 44%.

An analysis of test and fault data, what properties in the
given dataset influence defects, and how they might be used
to help developers and testers focus testing across large sets of
projects at Google is presented in [30]. This analysis starts by
looking at the elements in the datasets, and their most likely
interesting relations. In this case this focuses on the changes
made, and how these propagate in the system through known
dependencies.

The properties identified are discussed as potential features
for future applications of ML to make the defect prediction
more accurate [30]. These properties include how much over-
lap is between changed source code and package units, how
often each individual or automated tool causes test failures,
how far in dependency graphs failures typically are found

regarding the changes, and how often specific file types or
programming languages produce failures. These are used to
provide basic guidance where and for whom more testing and
review effort is suggested, and as feature for future application
of machine learning to produce automated classifiers for more
effective defect prediction.

G. Performance Testing

Feedback driven learning with software testing producing
the input is described in [25]. As test scripts are executed,
traces of program execution paths are collected. These traces
are ranked (clustered) according to their execution time, in
relation to the average execution time of all traces. Since the
goal is to find performance bottlenecks, traces with higher than
average execution times are labeled as good, and lower than
average as bad. A rule-based learner is applied on the resulting
set of bad traces and associated test inputs, aiming to identify
test inputs that cause low performance. Method sets in clusters
of bad and good traces are used to provide candidate methods
to check for performance issues. Methods in good sets may
be removed from the bad set. This approach in general seems
applicable also for network testing, as well as several types of
resources besides execution time.

V. DISCUSSION

While network analysis and software testing are different
domains, we look at some potential links between the two in
this section.

From network analysis viewpoint, some of the software
performance testing techniques can also be applied. Often the
goal is to analyze the performance of networks in different
configurations, with different loads, applications, or traffic
types. In such cases, data needs to be collected for these
different configurations to analyse the network performance.
Techniques similar to those used in software performance
testing could be applied to guide the generation of traffic in
networks, with the help of ML techniques or otherwise.

As listed previously, collecting issue report and mapping
them to part of the source code is a common application are for
ML in software testing. For the network analysis viewpoint,
similar approaches could be applied by collecting issues in
networks, and using these as input for the ML algorithms to
better identify when such issues might occur and what causes
them.

Manipulation and selection of features is a common trend
across ML application in software testing, network analysis,
and many other domains. Image manipulations as described in
[19] and [29] are an example of transforming input data for
more robust classifiers. Many testing related ML algorithms
preprocess basic metrics and features to provide higher level
features (e.g., [21], [23]). These are typically various NLP
transformations, as much of testing related data is in natural
language form. Question is, if similarly shared higher-level
transformations for network-related data could be identified.

Much as also discussed for defect prediction and test
prioritization, basic data analytics of the network scenarios



could be performed as a basis for building the actual use cases,
features, and contexts for more advanced ML applications in
networks. The example given for software testing was to take
the passing and failed test cases, and other data available about
the testing process, analyze this, and to build feature sets
to study the hypothesis for which tests should be prioritized
first. Here the high-level use case is known to start with, and
this is followed by setting a set of smaller sub-hypothesis,
analyzing these, and using the information learned from those
hypothesis to build more practically useful and advanced,
supporting, ML approaches. Similar approach for network
analysis could be done by defining the higher level goal,
building sub-hypothesis, reviewing available data, and building
ML algorithms and feature sets from the learned knowledge
as required for the high-level goal. This could be useful if
integrated as part of a test methodology or process as part of
test services in test networks such as SGTN.

VI. CONCLUSION

This is a review of small subset of work from recent years,
and from the viewpoint of potential applications in SGTN or
software testing. Broader review could be done as needed, and
as any new ideas of useful applications surface in different use
cases and test scenarios.

REFERENCES

[1] P. Casas, A. D’Alconzo, F. Wamser, M. Seufert, B. Gardlo, A. Schwind,
P. Tran-Gia, R. Schatz, "Predicting QoE in Cellular Networks using
Machine Learning and In-Smartphone Measurements”, International Con-
ference on Quality of Multimedia Experience (QoMEX), 2017.

[2] M. Fernandez-Delgado, E. Cenadas, S. Barro, D. Amorim, "Do we Need
Hundreds of Classifiers to Solve Real World Classification Problems?”,
Journal of Machine Learning Research, vol. 15, 2014.

[3] Y. He, F. R. Yu, N. Zhao, H. Yin, H. Yao, R. C. Qiu, "Big Data Analytics
in Mobile Cellular Networks”, IEEE Access, vol. 4, no. 99, 2016.

[4] T. Iwai, A. Nakao, ”"Adaptive Mobile Application Identification Through
In-Network Machine Learning”, Asia-Pacific Network Operations and
Management Symposium (APNOMS), 2016.

[5] R. I. Jony, A. Habib, N. Mohammed, R. I. Rony, "Big Data Use Case
Domains for Telecom Operators”, IEEE International Conference on
Smart City/SocialCom/SustainCom (SmartCity), 2015.

[6] A. B. Letaifa, ”Adaptive QoE monitoring architecture in SDN networks:
Video streaming services case”, International Wireless Communications
and Mobile Computing Conference IWCMC), 2017.

[7]1 E. Kaup, F. Michelinakis, N. Bui, J. Widmer, K. Wac, D. Hasheer,
”Assessing the Implications of Cellular Network Performance on Mobile
Content Access”, IEEE Transactions on Network and Service Manage-
ment, vol. 13, no. 2, 2016.

[8] M. S. parwez, D. B. Rawat, M. Garuba, “Big Data Analytics for User
Activity Analysis and User Anomaly Detection in Mobile Wireless
Network”, IEEE Transactions on Industrial Informatics, vol. 13, no. 4,
2017.

[9] Y. Syu, Y-Y. Fanjiang, J-Y. Kuo, J-L. Su, ”Quality of Service Time-
series Forecasting for Web Services: A Machine Learning, Genetic
Programming-Based Approach”, Annual Conference on Information Sci-
ence and Systems (CISS), 2016.

[10] U. Trivedi, M. Patel, ”A Fully Automated Deep Packet Inspection Veri-
fication System with Machine Learning”, IEEE International Conference
on Advanced Networks and Telecommunications Systems (ANTS), 2016.

[11] P. Wang, S-C. Lin, M. Luo, "A framework for QoS-aware Traffic
Classification Using Semi-Supervised Machine Learning in SDNs”, IEEE
International Conference on Services Computing (SCC), 2016.

[12] B. Yamansavascilar, M. A. Guvensan, A. G. Yavuz, M. e. Karsligil,
”Application Identification via Network Traffic Classification”, Workshop
on Comuping, Network and Communications (CNC), 2017.

[13] R. Malhotra, A systematic review of machine learning techniques for
software fault prediction”, Applied Soft Computing Journal, vol. 27, 2015.

[14] 1. Gondra, "Applying machine learning to software fault-proneness
prediction”, Journal of Systems and Software, vol. 81, no. 2, 2008.

[15] S. K. Lukins, N. A. Kraft, L. H. Etzkorn, "Bug localization using
latent Dirichlet allocation”, Information and Software Technology, vol.
52, 2010.

[16] D. G. Silva, M. Jino, B. T. de Abreu, "Machine Learning Methods
and Asymmetric Cost Function to Estimate Execution Effort of Software
Testing”, International Conference on Software Testing, Verification and
Validation, 2010.

[17] W. B. Langdon, S. Yoo, M. Harman, "Inferring Automatic Test Oracles”,
IEEE/ACM 10th International Workshop on Search-Based Software Test-
ing (SBST), 2017.

[18] N. DiGiuseppe, J. A. Jones, "Concept-Based Failure Clustering”, Inter-
national Symposium on the Foundations of Software Engineering (FSE),
2012.

[19] J. Ding, X-H. Hu, V. Gudivada, ”A Machine Learning Based Framework
for Verification and Validation of Massive Scale Image Data”, IEEE
Transactions on Big Data, 2017.

[20] M. Hall, "Correlation-Based Feature Selection for Machine Learning”,
Ph.D. Dissertation, The University of Waikato, Hamilton, New Zealand,
1999.

[21] J. Guo, J. Cheng, J. Cleland-Huang, ”Semantically Enhanced Software
Traceability Using Deep Learning Techniques”, IEEE/ACM 39th Inter-
national Conference on Software Engineering, 2017.

[22] J-W. Lin, FE. wang, P. Chu, ”Using Semantic Similarity in Crawling-
Based Web Application Testing”, IEEE International Conference on
Software Testing, Verification and Validation (ICST), 2017.

[23] J. Li, P. He, J. Zhu, M. R. Lyu, ”Software Defect Prediction via Con-
volutional Neural Network”, IEEE International Conference on Software
Quality, Reliability, and Security (QRS), 2017.

[24] B. Busjaeger, T. Xie, "Learning for Test Prioritization: An Industrial
Case Study”, ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE), 2016.

[25] Q. Luo, D. Poshyvanyk, A. Nair, M. Grechanik, "FOREPOST: A Tool
For Detecting Performance Problems with Feedback-Driven Learning
Software Testing”, 38th International Conference on Software Engineer-
ing Companion (ICSE), 2016.

[26] J. Petri¢, et al., "Building an Ensemble for Software Defect Prediction
Based on Diversity Selection”, ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2016.

[27] X. Xie, et. al., "Application of Metamorphic Testing to Supervised
Classifiers”,9th International Conferencee on Quality Software, 2009.
[28] P. Chiu, J. Reunanen, R. Luostari, H. Holma, ”"Big Data Analytics for
4.9G and 5G Mobile Network Optimization”, IEEE Vehicular Technology

Conference (VTC Spring), 2017.

[29] H. Hosseini, B. Xiao, M. Jaiswal, R. Poovendran, ”’On the Limitation of
Convolutional Neural Networks in Recognizing Negative Images”, 16th
IEEE International Conference on Machine Learning and Applications
(ICMLA), 2017.

[30] A. Memon, et al., "Taming Google-Scale Continuous Testing”, 39th
IEEE/ACM International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), 2017.



